35 research outputs found

    Pharmacological Properties of Edible Asparagus acutifolius and Asparagus officinalis Collected from North Iraq and Turkey (Hatay)

    Get PDF
    In this study, antioxidant, oxidant, antimicrobial, and antiproliferative activities of Asparagus acutifolius L. and Asparagus officinalis L., known for their nutritional properties, were determined. In this context, methanol (MeOH) and dichloromethane (DCM) extracts of plants were obtained. Total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) were determined using Rel Assay kits. Antimicrobial activities of plant extracts were determined against the test microorganisms using the agar dilution method. Antiproliferative activity was tested on the lung cancer cell line A549. As a result of the studies, it has been determined that the plant species have high antioxidant potential. In addition, it was observed that the antifungal potentials of plant extracts are high. Antiproliferative activity was determined to be at high level in both plant species. As a result, it has been determined that A. acutifolius and A. officinalis have medical potential and can be used as natural agents in pharmacological designs

    Expression profiling of SCN8A and NDUFC2 genes in colorectal carcinoma

    No full text
    The expression differences of SCN8A (which encodes type VIII alpha subunit of voltage gated sodium channel) and NDUFC2 (which encodes C2 subunit of Complex I enzyme in oxidative phosphorylation) genes were evaluated in paired colorectal cancer (CRC) tissues which was relied on our partial transcriptome analysis data in cancer cell lines. Materials and Methods: A total of 62 paired tissues of CRC patients (34 male, 28 female) were included in the study. The mRNA levels of SCN8A and NDUFC2 genes were determined by using real-time PCR (qRT-PCR and semiquantitative PCR). Results: SCN8A gene expression level was significantly lower in tumor tissues (p = 0.0128) and in the patients with the age below 45 years (p = 0.0049). There were also meaningful relationships between the gender, grade of CRC, tumor location, histopathological classification, and SCN8A expression. There was no NDUFC2 differential expression. However, the tumors taken from right colon had significantly lower NDUFC2 expression. Conclusion: Although the voltage gated sodium channels (VGSCs) and Complex I (CI) were associated to a number of diseases including different types of cancers, the different subunits of CI and individual members of VGSCs seem to be cancer type-specific in varying proportions. Key Words: colorectal carcinoma, SCN8A, NDUFC2, Complex I, voltage gated sodium channels, gene expression

    Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    Get PDF
    We thank the Peggy and Charles Stephenson Cancer Center at the University of Oklahoma, Oklahoma City, OK, for funding, who received an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103639 for the use of the Histology and Immunohistochemistry Core for providing immunohistochemistry and photographic services. This work was also supported by Oklahoma State University, Center of Veterinary Health Science (Support Grant AE-1-50060 to P.C.S.), the Musella Foundation (R.A.T.), and the Childhood Brain Tumor Foundation (R.A.T.).Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals (Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05), as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients.Yeshttp://www.plosone.org/static/editorial#pee

    Adsorption and interactions of the bovine serum albumin-double walled carbon nanotube system

    No full text
    Adsorption and interactions of Bovine Serum Albumin (BSA) with Double Walled Carbon Nanotubes (DWNT) prepared by catalytic chemical vapor deposition (CCVD) synthesis were studied. Adsorption kinetics and equilibrium were investigated by means of in situ UV-spectroscopy. The extent of adsorption at different temperatures was determined at the end of a 420-min adsorption period. The adsorption equilibrium experiments were performed using various amounts of nanotubes at pH 4 and 40 °C, and the adsorption parameters were evaluated comparing the experimental data with models such as the Freundlich and Langmuir isotherms. The maximum protein adsorption capacity (Q0) of DWNT was determined as 1221 mg·g- 1. The effect of temperature on the adsorption rate experiments was investigated for constant amount of adsorbent at pH 4. Adsorption kinetics followed the pseudo-first-order rate. Zeta potential measurements were performed with respect to solution pH for understanding the protein-surface interactions. The interactions between positively charged BSA molecules with negatively charged DWNT at pH 4 were found to be electrostatic attractions. Thermodynamic parameters, ?H0 and ?S0 were found as 9.40 kJ·mol- 1 and 321.5 J·mol- 1 K- 1, respectively. ?H0 value indicated that BSA adsorption on DWNT was a physisorption process. © 2017 Elsevier B.V

    Perforation of the urinary bladder wall by foley catheter

    No full text
    Background: A 45-year-old male patient was admitted to the urology department with hematuria. Patient was known with bladder cancer and refused surgery four years ago

    Silencing of TP73-AS1 impairs prostate cancer cell proliferation and induces apoptosis via regulation of TP73

    No full text
    Background: Prostate cancer is a malignant disease that severely affects the health and comfort of the male population. The long non-coding RNA TP73-AS1 has been shown to be involved in the malignant transformation of various human cancers. However, whether TP73-AS1 contributes to prostate cancer progression has not been reported yet. Accordingly, here we aimed to report the role of TP73-AS1 in the development and progression of prostate cancer and determine its relationship with TP73. Methods and results: TP73-AS1-specific siRNA oligo duplexes were used to silence TP73-AS1 in DU-145 and PC-3 cells. Results indicated that TP73-AS1 was upregulated whereas TP73 was downregulated in prostate cancer cells compared to normal prostate cells and there was a negative correlation between them. Besides, loss of function experiments of TP73-AS1 in prostate cancer cells strongly induced cellular apoptosis, interfered with the cell cycle progression, and modulated related pro- and anti-apoptotic gene expression. Colony formation and migration capacities of TP73-AS1-silenced prostate cancer cells were also found to be dramatically reduced. Conclusions: Our findings provide novel evidence that suggests a chief regulatory role for the TP73-TP73-AS1 axis in prostate cancer development and progression, suggesting that the TP73/TP73-AS1 axis can be a promising diagnostic and therapeutic target for prostate cancer. © 2022, The Author(s), under exclusive licence to Springer Nature B.V.ONAP.19.205This study was supported by Tekirdag Namik Kemal University (Grant no. NKUBAP.02.ONAP.19.205)

    EXPRESSION PROFILING OF SCN8A AND NDUFC2 GENES IN COLORECTAL CARCINOMA

    No full text
    The expression differences of SCN8A (which encodes type VIII alpha subunit of voltage gated sodium channel) and NDUFC2 (which encodes C2 subunit of Complex I enzyme in oxidative phosphorylation) genes were evaluated in paired colorectal cancer (CRC) tissues which was relied on our partial transcriptome analysis data in cancer cell lines. Materials and Methods: A total of 62 paired tissues of CRC patients (34 male, 28 female) were included in the study. The mRNA levels of SCN8A and NDUFC2 genes were determined by using real-time PCR (qRT-PCR and semiquantitative PCR). Results: SCN8A gene expression level was significantly lower in tumor tissues (p = 0.0128) and in the patients with the age below 45 years (p = 0.0049). There were also meaningful relationships between the gender, grade of CRC, tumor location, histopathological classification, and SCN8A expression. There was no NDUFC2 differential expression. However, the tumors taken from right colon had significantly lower NDUFC2 expression. Conclusion: Although the voltage gated sodium channels (VGSCs) and Complex I (CI) were associated to a number of diseases including different types of cancers, the different subunits of CI and individual members of VGSCs seem to be cancer type-specific in varying proportions. Key Words: colorectal carcinoma, SCN8A, NDUFC2, Complex I, voltage gated sodium channels, gene expression
    corecore