5,536 research outputs found

    Optimization of quantum cascade laser operation by geometric design of cascade active band in open and closed models

    Full text link
    Using the effective mass and rectangular potential approximations, the theory of electron dynamic conductivity is developed for the plane multilayer resonance tunnel structure placed into a constant electric field within the model of open nanosystem, and oscillator forces of quantum transitions within the model of closed nanosystem. For the experimentally produced quantum cascade laser with four-barrier active band of separate cascade, it is proven that just the theory of dynamic conductivity in the model of open cascade most adequately describes the radiation of high frequency electromagnetic field while the electrons transport through the resonance tunnel structure driven by a constant electric field.Comment: 10 pages, 2 figure

    Nematicidal activity of aqueous tinctures of medicinal plants against larvae of the nematodes Strongyloides papillosus and Haemonchus contortus

    Get PDF
    The study focuses on in vitro effect of aqueous tinctures of 48 species of herbaceous, shrub and tree plants on the first-third stage larvae of Strongyloides papillosus (Wedl, 1856) and third-stage larvae of Haemonchus contortus (Rudolphi, 1803) Cobb, 1898. The highest level of the effect was exerted by 3% aqueous tinctures of Wisteria sinensis (Sims) DC., Ailanthus altissima (Mill.) Swingle, Laburnum anagyroides Medik., Quercus petraea subsp. iberica (Steven ex M. Bieb.) Krassiln., Ginkgo biloba L., Colchicum autumnale L., Aristolochia manshuriensis Kom., Celastrus scandens L., Securigera varia (L.) Lassen, Magnolia kobus DC. Over 90% of the first and second non-invasive stage larvae of S. papillosus died at contact with these tinctures. The lowest parameters of LD50 were seen for L. anagyroides, Juniperus sabina L., C. scandens, M. kobus, A. manshuriensis, Wisteria sinensis (Sims) DC. and Securigera varia (L.) Lassen. Invasive larvae of S. papillosus and H. contortus were resistant to the effect of all the 48 surveyed species of plants. Third-stage larvae of H. contortus remained vital when exposed for 24 h to all the studied concentrations up to 3% aqueous tincture of plants. The results of the experiments and also the analysis of the literature indicate the necessity to continue the survey on nematocidial activity of aqueous tinctures and alcveshol extracts of plants

    Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ‚Π° дСякі пСрСтворСння 5-Ρ–Π·ΠΎΠΊΡΠ°Π·ΠΎΠ»Ρ–Π»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρ–Π²

    Get PDF
    The effect of the structure of 5-(benzylthio)isoxazoles on selectivity of the synthesis of 5-(chlorosulfonyl)isoxazoles has been determined. The chemical behavior in relation to amines has been described.Aim. To develop the methods for the synthesis of 5-(chlorosulfonyl)- isoxazoles and 4-chloro-5-(chlorosulfonyl)isoxazoles as promising reagents for construction of prospective bioactive compounds.Results and discussion. The number of 5-(benzylthio)isoxazoles was obtained by cyclocondensation of N-hydroxyimidoyl chlorides or 2-chloro-2-(hydroxyimino) acetates with benzylethynylsulfide. Their oxidative chlorination with gaseous chlorine led to formation of the mixture of isoxazole-5-sulfonyl chlorides and 4-chloroisoxazole-5-sulfonyl chlorides. The ratio between these products in the mixture depended on the nature of the substitution group in position 3 of the isoxazole ring. For the synthesis of 4-chloro-5-(chlorosulfonyl)isoxazoles with acceptable yields the approach of an advance chlorination of 5-benzylthioisoxazoles by N-chlorosuccinimide with further oxidative chlorination was used.Experimental part. The synthesis of the starting and target compounds was performed in classic preparative conditions; flesh-chromatography; elemental analysis; LCMS; 1H and 13C NMR-spectroscopy were used.Conclusions. The reaction of oxidative chlorination of 5-(benzylthio)-3-isoxazoles has been studied. The synthetic approach for the previously unknown representatives of isoxazole-5-sulfonylchlorides has been developed.ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ влияниС структуры 5-бСнзилтиоизоксазолов Π½Π° ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ образования 5-ΠΈΠ·ΠΎΠΊΡΠ°Π·ΠΎΠ»ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄ΠΎΠ² ΠΈ выявлСно химичСскоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ послСдних ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π°ΠΌΠΈΠ½Π°ΠΌ.ЦСль  Ρ€Π°Π±ΠΎΡ‚Ρ‹ – созданиС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² синтСза 5-изоксазолил- ΠΈ 4-Ρ…Π»ΠΎΡ€-5-ΠΈΠ·ΠΎΠΊΡΠ°Π·ΠΎΠ»ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄ΠΎΠ² ΠΊΠ°ΠΊ пСрспСктивных Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ² для конструирования ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ Π±ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. ЦиклокондСнсациСй N-гидроксиимидоилхлоридов ΠΈΠ»ΠΈ 2-Ρ…Π»ΠΎΡ€ΠΎ-2-(гидроксиимино)Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠ² ΠΈΠ· Π±Π΅Π½Π·ΠΈΠ»Ρ‚ΠΈΠΎΠ°Ρ†Π΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠΌ синтСзировано ряд 5-бСнзилтиоизоксазолов. Π˜Ρ… ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Ρ…Π»ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ смСси 5-ΠΈΠ·ΠΎΠΊΡΠ°Π·ΠΎΠ»ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄ΠΎΠ² ΠΈ 4-Ρ…Π»ΠΎΡ€-5-ΠΈΠ·ΠΎΠΊΡΠ°Π·ΠΎΠ»ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄ΠΎΠ², ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ зависит ΠΎΡ‚ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° замСститСлСй Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3 изоксазольного Ρ†ΠΈΠΊΠ»Π°. Для синтСза 4-Ρ…Π»ΠΎΡ€-5-ΠΈΠ·ΠΎΠΊΡΠ°Π·ΠΎΠ»ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄ΠΎΠ² с ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π°ΠΌΠΈ использован Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ хлорирования ядра 5-бСнзилтиоизоксазолов N-хлорсукцинимидом с дальнСйшим ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ…Π»ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ.Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ. Π‘ΠΈΠ½Ρ‚Π΅Π· исходных ΠΈ Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… соСдинСний Π² классичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… условиях; ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ„Π»Π΅Ρˆ-Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, элСмСнтного Π°Π½Π°Π»ΠΈΠ·Π°, хроматомасс-спСктромСтрии, ЯМР 1Н ΠΈ 13Π‘-спСктроскопии. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ИсслСдована рСакция ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ хлорирования 5-бСнзилтиоизоксазолов ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ синтСтичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Ρ€Π°Π½Π΅Π΅ нСизвСстным прСдставитСлям 5-ΠΈΠ·ΠΎΠΊΡΠ°Π·ΠΎΠ»ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄ΠΎΠ².ВстановлСно Π²ΠΏΠ»ΠΈΠ² структури 5-бСнзилтіоізоксазолів Π½Π° ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ утворСння 5-Ρ–Π·ΠΎΠΊΡΠ°Π·ΠΎΠ»Ρ–Π»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρ–Π² Ρ‚Π° з’ясована Ρ…Ρ–ΠΌΡ–Ρ‡Π½Π° ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠ° останніх ΠΏΠΎ Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡŽ Π΄ΠΎ Π°ΠΌΡ–Π½Ρ–Π².ΠœΠ΅Ρ‚Π° Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ – створСння ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² синтСзу 5-ізоксазоліл- Ρ‚Π° 4-Ρ…Π»ΠΎΡ€ΠΎ-5-Ρ–Π·ΠΎΠΊΡΠ°Π·ΠΎΠ»Ρ–Π»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρ–Π² як пСрспСктивних Ρ€Π΅Π°Π³Π΅Π½Ρ‚Ρ–Π² для ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΡŽΠ²Π°Π½Π½Ρ ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎ Π±Ρ–ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. Π¦ΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°Ρ†Ρ–Ρ”ΡŽ N-гідроксіімідоїлхлоридів Π°Π±ΠΎ 2-Ρ…Π»ΠΎΡ€ΠΎ-2-(гідроксііміно)Π°Ρ†Π΅Ρ‚Π°Ρ‚Ρ–Π² Ρ–Π· Π±Π΅Π½Π·ΠΈΠ»Ρ‚Ρ–ΠΎΠ°Ρ†Π΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠΌ синтСзовано Π½ΠΈΠ·ΠΊΡƒ 5-бСнзилтіоізоксазолів. Π‡Ρ… окиснювальнС хлорування ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ утворСння ΡΡƒΠΌΡ–ΡˆΡ– 5-Ρ–Π·ΠΎΠΊΡΠ°Π·ΠΎΠ»Ρ–Π»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρ–Π² Ρ‚Π° 4-Ρ…Π»ΠΎΡ€ΠΎ-5-Ρ–Π·ΠΎΠΊΡΠ°Π·ΠΎΠ»Ρ–Π»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρ–Π², ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ ΠΌΡ–ΠΆ якими Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Ρƒ замісників Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 3 Ρ–Π·ΠΎΠΊΡΠ°Π·ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Ρƒ. Для синтСзу 4-Ρ…Π»ΠΎΡ€ΠΎ-5-Ρ–Π·ΠΎΠΊΡΠ°Π·ΠΎΠ»Ρ–Π»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρ–Π² Ρ–Π· Π·Π°Π΄ΠΎΠ²Ρ–Π»ΡŒΠ½ΠΈΠΌΠΈ Π²ΠΈΡ…ΠΎΠ΄Π°ΠΌΠΈ використано Π²Π°Ρ€Ρ–Π°Π½Ρ‚ ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΠ³ΠΎ хлорування ядра 5-бСнзилтіоізоксазолів N-хлоросукцинімідом Ρ–Π· подальшим окиснювальним хлоруванням.Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π° частина. Π‘ΠΈΠ½Ρ‚Π΅Π· Π²ΠΈΡ…Ρ–Π΄Π½ΠΈΡ… Ρ‚Π° Ρ†Ρ–Π»ΡŒΠΎΠ²ΠΈΡ… сполук Ρƒ класичних ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ…; ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Ρ„Π»Π΅Ρˆ-Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ—, Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ, хроматомас-спСктромСтрії, ЯМР 1Н Ρ‚Π° 13Π‘-спСктроскопії.Висновки. ДослідТСна рСакція окиснювального хлорування 5-бСнзилтіоізоксазолів Ρ‚Π° Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ синтСтичний ΠΏΡ–Π΄Ρ…Ρ–Π΄ Π΄ΠΎ Ρ€Π°Π½Ρ–ΡˆΠ΅ Π½Π΅Π²Ρ–Π΄ΠΎΠΌΠΈΡ… прСдставників 5-Ρ–Π·ΠΎΠΊΡΠ°Π·ΠΎΠ»Ρ–Π»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρ–Π²

    A major cellular substrate for protein kinases, annexin II, is a DNA-binding protein

    Get PDF
    AbstractWe have screened a human cDNA expression library in Ξ»gt11 for clones encoding Alu-binding proteins using direct binding of labeled Alu DNA to recombinant phage lysates fixed on a membrane, and isolated a clone 98% identical in sequence to the well-known substrate of protein kinases, annexin II, which was suggested earlier to play a role in transduction of mitogenic signals and DNA replication. A diagnostic property of annexins is their binding to phospholipids in the presence of calcium ions, and we have found that the interaction of proteins of human nuclear extracts with Alu subsequences is suppressed by Ca/phosphatidylserine liposomes, suggesting overlapping of Ca/phospholipid- and DNA-binding domains in annexin II

    Singular reduction modules of differential equations

    Full text link
    The notion of singular reduction modules, i.e., of singular modules of nonclassical (conditional) symmetry, of differential equations is introduced. It is shown that the derivation of nonclassical symmetries for differential equations can be improved by an in-depth prior study of the associated singular modules of vector fields. The form of differential functions and differential equations possessing parameterized families of singular modules is described up to point transformations. Singular cases of finding reduction modules are related to lowering the order of the corresponding reduced equations. As examples, singular reduction modules of evolution equations and second-order quasi-linear equations are studied. Reductions of differential equations to algebraic equations and to first-order ordinary differential equations are considered in detail within the framework proposed and are related to previous no-go results on nonclassical symmetries.Comment: 38 pages, advanced version. Extension of results of arXiv:0808.3577 to the case of a greater number of independent variable

    Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations

    Full text link
    A complete group classification of a class of variable coefficient (1+1)-dimensional telegraph equations f(x)utt=(H(u)ux)x+K(u)uxf(x)u_{tt}=(H(u)u_x)_x+K(u)u_x, is given, by using a compatibility method and additional equivalence transformations. A number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Furthermore, the possible additional equivalence transformations between equations from the class under consideration are investigated. Exact solutions of special forms of these equations are also constructed via classical Lie method and generalized conditional transformations. Local conservation laws with characteristics of order 0 of the class under consideration are classified with respect to the group of equivalence transformations.Comment: 23 page
    • …
    corecore