25,395 research outputs found

    Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets

    Full text link
    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of Thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly---for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds.Comment: 13 pages, 9 figures, http://csc.ucdavis.edu/~cmg/compmech/pubs/mrd.ht

    How to identify the youngest protostars

    Get PDF
    We study the transition from a prestellar core to a Class 0 protostar, using SPH to simulate the dynamical evolution, and a Monte Carlo radiative transfer code to generate the SED and isophotal maps. For a prestellar core illuminated by the standard interstellar radiation field, the luminosity is low and the SED peaks at ~190 micron. Once a protostar has formed, the luminosity rises (due to a growing contribution from accretion onto the protostar) and the peak of the SED shifts to shorter wavelengths (~80-100 micron). However, by the end of the Class 0 phase, the accretion rate is falling, the luminosity has decreased, and the peak of the SED shifts back towards longer wavelengths (90-150 micron). In our simulations, the density of material around the protostar remains sufficiently high well into the Class 0 phase that the protostar only becomes visible in the NIR if it is displaced from the centre dynamically. Raw submm/mm maps of Class 0 protostars tend to be much more centrally condensed than those of prestellar cores. However, when convolved with a typical telescope beam, the difference in central concentration is less marked, although the Class 0 protostars appear more circular. Our results suggest that, if a core is deemed to be prestellar on the basis of having no associated IRAS source, no cm radio emission, and no outflow, but it has a circular appearance and an SED which peaks at wavelengths below ~170 micron, it may well contain a very young Class 0 protostar.Comment: Accepted by A&A (avaliable with high-res images at http://carina.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/publications

    Shortcuts to Thermodynamic Computing: The Cost of Fast and Faithful Erasure

    Get PDF
    Landauer's Principle states that the energy cost of information processing must exceed the product of the temperature and the change in Shannon entropy of the information-bearing degrees of freedom. However, this lower bound is achievable only for quasistatic, near-equilibrium computations -- that is, only over infinite time. In practice, information processing takes place in finite time, resulting in dissipation and potentially unreliable logical outcomes. For overdamped Langevin dynamics, we show that counterdiabatic potentials can be crafted to guide systems rapidly and accurately along desired computational paths, providing shortcuts that allows for the precise design of finite-time computations. Such shortcuts require additional work, beyond Landauer's bound, that is irretrievably dissipated into the environment. We show that this dissipated work is proportional to the computation rate as well as the square of the information-storing system's length scale. As a paradigmatic example, we design shortcuts to erase a bit of information metastably stored in a double-well potential. Though dissipated work generally increases with erasure fidelity, we show that it is possible perform perfect erasure in finite time with finite work. We also show that the robustness of information storage affects the energetic cost of erasure---specifically, the dissipated work scales as the information lifetime of the bistable system. Our analysis exposes a rich and nuanced relationship between work, speed, size of the information-bearing degrees of freedom, storage robustness, and the difference between initial and final informational statistics.Comment: 19 pages, 7 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/scte.ht

    Stability of Magneto-optical Traps with Large Field Gradients: Limits on the Tight Confinement of Single Atoms

    Get PDF
    We report measurements of the stability of magneto-optical traps (MOTs) for neutral atoms in the limit of tight confinement of a single atom. For quadrupole magnetic field gradients at the trap center greater than ∼1 kG/cm, we find that stochastic diffusion of atoms out of the trapping volume becomes the dominant particle loss mechanism, ultimately limiting the MOT size to greater than ∼5 μm. We measured and modeled the diffusive loss rate as a function of laser power, detuning, and field gradient for trapped cesium atoms. In addition, for as few as two atoms, the collisional loss rates become very high for tightly confined traps, allowing the direct observation of isolated two-body atomic collisions in a MOT

    Revealing Network Connectivity From Dynamics

    Full text link
    We present a method to infer network connectivity from collective dynamics in networks of synchronizing phase oscillators. We study the long-term stationary response to temporally constant driving. For a given driving condition, measuring the phase differences and the collective frequency reveals information about how the oscillators are interconnected. Sufficiently many repetitions for different driving conditions yield the entire network connectivity from measuring the dynamics only. For sparsely connected networks we obtain good predictions of the actual connectivity even for formally under-determined problems.Comment: 10 pages, 4 figure

    Polarization squeezing of light by single passage through an atomic vapor

    Full text link
    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant 87^{87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous variables quantum protocols was observed. The extreme simplicity of the setup, based on standard polarization components, makes it particularly convenient for quantum information applications.Comment: Revised version. Minor changes. four pages, three figure

    Religious leaders\u27 perceptions of advance care planning: a secondary analysis of interviews with Buddhist, Christian, Hindu, Islamic, Jewish, Sikh and Bahai leaders

    Get PDF
    Background: International guidance for advance care planning (ACP) supports the integration of spiritual and religious aspects of care within the planning process. Religious leaders’ perspectives could improve how ACP programs respect patients’ faith backgrounds. This study aimed to examine: (i) how religious leaders understand and consider ACP and its implications, including (ii) how religion affects followers’ approaches to end-of-life care and ACP, and (iii) their implications for healthcare. Methods: Interview transcripts from a primary qualitative study conducted with religious leaders to inform an ACP website, ACPTalk, were used as data in this study. ACPTalk aims to assist health professionals conduct sensitive conversations with people from different religious backgrounds. A qualitative secondary analysis conducted on the interview transcripts focussed on religious leaders’ statements related to this study’s aims. Interview transcripts were thematically analysed using an inductive, comparative, and cyclical procedure informed by grounded theory. Results: Thirty-five religious leaders (26 male; mean 58.6-years-old), from eight Christian and six non-Christian (Jewish, Buddhist, Islamic, Hindu, Sikh, Bahá’í) backgrounds were included. Three themes emerged which focussed on: religious leaders’ ACP understanding and experiences; explanations for religious followers’ approaches towards end-of-life care; and health professionals’ need to enquire about how religion matters. Most leaders had some understanding of ACP and, once fully comprehended, most held ACP in positive regard. Religious followers’ preferences for end-of-life care reflected family and geographical origins, cultural traditions, personal attitudes, and religiosity and faith interpretations. Implications for healthcare included the importance of avoiding generalisations and openness to individualised and/ or standardised religious expressions of one’s religion. Conclusions: Knowledge of religious beliefs and values around death and dying could be useful in preparing health professionals for ACP with patients from different religions but equally important is avoidance of assumptions. Community-based initiatives, programs and faith settin

    Instability and spatiotemporal rheochaos in a shear-thickening fluid model

    Full text link
    We model a shear-thickening fluid that combines a tendency to form inhomogeneous, shear-banded flows with a slow relaxational dynamics for fluid microstructure. The interplay between these factors gives rich dynamics, with periodic regimes (oscillating bands, travelling bands, and more complex oscillations) and spatiotemporal rheochaos. These phenomena, arising from constitutive nonlinearity not inertia, can occur even when the steady-state flow curve is monotonic. Our model also shows rheochaos in a low-dimensional truncation where sharply defined shear bands cannot form
    • …
    corecore