1,400 research outputs found

    Biofilm Inhibitory Coatings Formulated from Glass Polyalkenoate Cement Chemistry: An Evaluation of their Adhesive Nature

    Get PDF
    Researchers evaluated the adhesive nature of the biofilm inhibitory coatings formulated from glass polyalkenoate cement (GPC) chemistry with the aim to establish the novel testing modality by modifying the conventional T-peel tests. Special consideration was given to determine the resistance of a bonded assembly of two adherents having at least one adherent flexible to quantify the bond between tape and a surgical metal substrate bonded by a luting GPC. The delaminated tape surface was examined by scanning electron microscopy (SEM) with an accelerating voltage of 20 K V to determine whether failure of the bond was adhesive of cohesive in nature. Researchers have also evaluated the cements against Ti6A14V, as they are designed as surgical coatings. The load testing evaluation in excess of 5500 Pa, showed the failure of the novel GPC adhered to rigid and flexible substrates

    Simulation modeling for long duration spacecraft control systems

    Get PDF
    The use of simulation is described and it is contrasted to analytical solution techniques for evaluation of analytical reliability models. The role importance sampling plays in simulation of models of this type was also discussed. The simulator tool used for our analysis is described. Finally, the use of the simulator tool was demonstrated by applying it to evaluate the reliability of a fault tolerant hypercube multiprocessor intended for spacecraft designed for long duration missions. The reliability analysis was used to highlight the advantages and disadvantages offered by simulation over analytical solution of Markovian and non-Markovian reliability models

    Testing the Accuracy and Stability of Spectral Methods in Numerical Relativity

    Get PDF
    The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the KST representation of the Einstein evolution equations. The basic "Mexico City Tests" widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test. All of these tests are found to be stable, except for simulations of high amplitude gauge waves with nontrivial shift.Comment: Final version, as published in Phys. Rev. D; 13 pages, 16 figure

    The Effect of Ionic Dissolution Products of Ca-Sr-Na-Zn-Si Bioactive Glass on in Vitro Cytocompatibility

    Get PDF
    Many commercial bone grafts cannot regenerate healthy bone in place of diseased bone. Bioactive glasses have received much attention in this regard due to the ability of their ionic dissolution products to promote cell proliferation, cell differentiation and activate gene expression. Through the incorporation of certain ions, bioactive glasses can become therapeutic for specific pathological situations. Calcium-strontium-sodium-zinc-silicate glass bone grafts have been shown to release therapeutic levels of zinc and strontium, however the in vitro compatibility of these materials is yet to be reported. In this study, the in vitro cytocompatibility of three different calcium-strontium-sodium-zinc-silicate glasses was examined as a function of their ion release profiles, using Novabone® bioglass as a commercial comparison. Experimental compositions were shown to release Si4+ ranging from 1 to 81 ppm over 30 days; comparable or enhanced release in comparison to Novabone. The maximum Ca2+ release detected for experimental compositions was 9.1 ppm, below that reported to stimulate osteoblasts. Sr2+ release was within known therapeutic ranges, and Zn2+ release ranged from 0.5 to 1.4 ppm, below reported cytotoxic levels. All examined glass compositions show equivalent or enhanced in vitro compatibility in comparison to Novabone. Cells exposed to BT112 ionic products showed enhanced cell viabilities indicating cell proliferation was induced. The ion release profiles suggest this effect was due to a synergistic interaction between certain combinations and concentrations of ions. Overall, results indicate that the calcium-strontium-sodium-zinc-silicate glass compositions show equivalent or even enhanced in vitro compatibility compared to Novabone®. © 2010 Springer Science+Business Media, LLC

    Antibacterial Coatings for Medical Devices based on Glass Polyalkenoate Cement Chemistry

    Get PDF
    A biofilm is an accumulation of micro-organisms and their extracellular products forming a structured community on a surface. Biofilm formation on medical devices has severe health consequences as bacteria growing in this lifestyle are tolerant to both host defense mechanisms and antibiotic therapies. However, silver and zinc ions inhibit the attachment and proliferation of immature biofilms. The objective of this study is to evaluate whether it is possible to produce silver and zinc-containing glass polyalkenoate cement (GPC) coatings for medical devices that have antibacterial activity and which may therefore inhibit biofilm formation on a material surface. Two silver and zinc-containing GPC coatings (A and B) were synthesised and coated onto Ti6Al4V discs. Their handling properties were characterised and atomic absorption spectrometery was employed to determine zinc and silver ion release with coating maturation up to 30 days. The antibacterial properties of the coatings were also evaluated against Staphylococcus aureus and a clinical isolate of Pseudomonas aeruginosa using an agar diffusion assay method. The majority of the zinc and silver ions were released within the first 24 h; both coatings exhibited antibacterial effect against the two bacterial strains, but the effect was more intense for B which contained more silver and less zinc than A. Both coatings produced clear zones of inhibition with each of the two organisms tested. In this assay, Ps. aeruginosa was more sensitive than S. aureus. The diameters of these zones were reduced after the coating had been immersed in water for varying periods due to the resultant effect on ion release. © 2008 Springer Science+Business Media, LLC

    High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation

    Full text link
    We demonstrate a 5-GHz-broadband tunable slow-light device based on stimulated Brillouin scattering in a standard highly-nonlinear optical fiber pumped by a noise-current-modulated laser beam. The noise modulation waveform uses an optimized pseudo-random distribution of the laser drive voltage to obtain an optimal flat-topped gain profile, which minimizes the pulse distortion and maximizes pulse delay for a given pump power. Eye-diagram and signal-to-noise ratio (SNR) analysis show that this new broadband slow-light technique significantly increases the fidelity of a delayed data sequence, while maintaining the delay performance. A fractional delay of 0.81 with a SNR of 5.2 is achieved at the pump power of 350 mW using a 2-km-long highly nonlinear fiber with the fast noise-modulation method, demonstrating a 50% increase in eye-opening and a 36% increase in SNR compared to a previous slow-modulation method

    Tutorial: Advanced fault tree applications using HARP

    Get PDF
    Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented

    Fault management for data systems

    Get PDF
    Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described

    Key populations and power: people-centred social innovation in Asian HIV services.

    Get PDF
    Key populations increasingly lead the design, implementation, and evaluation of HIV services, which provides an opportunity to make them more people-centred. Despite many challenges, a strong argument that these populations must have a greater role in HIV service planning, development, and delivery worldwide exists. This Viewpoint focuses on Asia, where key populations have advocated for legal reform, engaged vulnerable groups to decrease stigma, co-created innovative HIV services, and developed new key population-led health services. Further research on key populations and their roles in HIV implementation and sustainable scale-up is needed in Asia and beyond
    • …
    corecore