
NASA Technical Memorandum 103953

//V- _- /

-t

Fault Manageement for Data
Systems -

Mark A. Boyd, David L. Iverson, and
F. Ann Patterson-Hine

(NASA-TM-I03953) FAULT MANAGEMENT

FOR DATA SYSTEMS (NASA) 23 p

N94-15548

Unclas

September 1993
G3/51 0190803

NASA
National Aeronautics and
Space Administration

https://ntrs.nasa.gov/search.jsp?R=19940011075 2020-06-16T19:17:02+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42790618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4 _

ly

NASA Technical Memorandum 103953

Fault Management for Data
Systems
Mark A. Boyd, David L. Iverson, and F. Ann Patterson-Hine
Ames Research Center, Moffett Field, California

September 1993

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

SUMMARY

We consider issues related to automating the process of fault-management (fault diagnosis and

response) for data management systems. Substantial benefits are to be gained by successful automation

of this process, particularly for large complex systems. We advocate the use of graph-based models

to develop a computer-assisted fault-management system. We begin by describing the general problem

and outlining the motivation behind choosing graph-based models over other approaches for developing

fault-diagnosis computer programs. We review some existing work in the area of graph-based fault-

diagnosis, and offer a new fault-management method which we have developed from existing methods.

We apply our method to an automatic telescope system intended as a prototype for future lunar telescope

programs. Finally, we describe the application of our method to general data-management systems.

1 INTRODUCTION

Fault management is an important issue that must be addressed in the design and operation of

large data systems. Typically a complex system is overseen by one or more human operators who are

responsible for the correct operation of the system. Human operators are responsible for diagnosing

any failures within the system and for formulating courses of action in response to the failures. The

system often exhibits a set of symptoms that characterize a specific failure. From these symptoms the

human operators must infer causes of the failure, consequences to the system, and what operational

adjustment is necessary to compensate for the inferred failures. As stated, this process relies heavily

upon human expertise and can be prone to errors in judgment. Systems that exceed a certain size and

complexity invariably exceed the capacity of human diagnosis and fault management. Therefore, a

substantial benefit may be obtained by automating the process. Such automation could be achieved by

developing a computer program capable of analyzing sets of symptoms exhibited by a system. The

computer program would be capable of inferring specific component failures most likely to be causes of

the symptoms, and optionally providing recommendations to human operators for effective courses of

action. The corrective recommendations could range from performing diagnostics and gathering further

failure information, to suggesting repair, reconfiguration, or altering operating procedures to compensate

for diagnosed failure. If the diagnostic program is integrated with a hardware system, the program can

implement any of the courses of action discussed and would not require human intervention. Such a

system would constitute a fully automated recovery system, which could significantly improve reliability

and performance.

There are several issues involved in the design and development of a fault management computer

advisor program, such as that described above. The program should be able to accommodate large,

complex systems. The program should be reasonably easy for non-computer-specialists to use. Results

of the analysis performed by the program must be provided for display in a manner understandable to the

human operator. Ideally, the display should operate in an intuitive manner, otherwise human operators

are likely distrust the computer's diagnosis or recommendations. Since the intended subject of the

analysis is a data system in operation, the analysis must be capable of being completed and available for

display in a timely manner because human operators will need to respond quickly to whatever failures

have occurred. A major issue to consider is the type of system model the advisor program is to use

for the analysis process. The type of model can have a major impact on the resources required for the

design and implementation of both the advisor program and the model itself. It can also have a major

effecton how well theprogramand modeladdressandresolvetheother issuesmentionedabove.We
discusssomeoptionsfor underlyingsystemmodelsin thenext section.

2 MODEL TECHNIQUES FOR FAULT MANAGEMENT

There are several different approaches available for addressing the above fault management prob-

lem. An obvious possibility is the use of a traditional rule-based expert system. It has long been estab-

lished that such systems are well-suited to the type of inferential reasoning required by a computer-based

fault management advisor. However, rule-based expert systems have a number of drawbacks. One of the

most important of these is the fact that these systems tend to be large, complex, and difficult to maintain.

In addition, the rule base can be difficult to construct and debug, often requiring the services of artificial

intelligence (AI) specialists to initially develop and sometimes to maintain a system. Another factor

specific to this particular application is the potential for integration of inferential diagnosis reasoning

with other system analysis measures, such as reliability. There is no natural method for integrating

reliability calculation with inferential reasoning in rule-based expert systems.

The Dependable Multiprocessing group in the Computational Systems Research Branch, Informa-

tion Sciences Division at NASA Ames Research Center has been working with an alternate approach to

developing a fault management advisor. Specifically, we have been investigating the use of digraphs and

AND-OR fault trees to build models of the target system. The resulting analytical models can then be

analyzed to produce the desired inferential reasoning to map a set of symptoms into a set of candidate

faults and to evaluate the effect of both the faults and any proposed workaround procedures on the

system as a whole. Both digraphs and fault trees are static failure space models and do not involve

simulation. They model the system by depicting the effect of faults and failures on the system. They

both belong to a class of models called combinatorial analytic models, which express system behavior

in terms of the ways that individual component/subsystem failures combine together to affect the overall

system. We offer a brief description of both digraphs and AND-OR fault trees in the paragraphs below.

Digraphs

The term digraph stands for directed graph. A digraph consists of a number of nodes (depicted by

circles) connected by a number of directed arcs. A node usually represents the occurrence of a particular

event, such as the failure of an individual component or subsystem. The directed arcs depict how the

effects of failures/events propagate through the system. In addition to nodes and directed arcs, digraphs

may contain AND gates. An AND gate is represented by a bar, a number of directed arcs terminating on

one side of the bar that represent input events to the gate, and a single directed arc emanating from the

opposite side of the bar which represents the output event of the gate. The output event occurs only if all

of the in_put events occur. Digraph models usually follow the schematic of a system fairly closely since

the effect of failures often propagate along the physical/electrical connections between individual system

components, and the schematic is intended to depict precisely these physical/electrlcal connections. This

close structural similarity of the model with the systern means that the model is usually much easier to

construct and verify than a set of abstract inference rules, such as is required by the rule-based expert

systems mentioned above.

Thefailureof acomponentor occurrence of an event is represented in the model by the highlighting

or marking of the digraph node that represents that component/event. The propagation of the effect of

the Component failure is represented by the subsequent marking of all nodes to which a directed arc

exists from the marked node. The overall propagation throughout the system of the component failure

is achieved by recursively applying this marking procedure to the newly marked nodes which were

directly affected by the initially marked node. The justification for this procedure lies in the assumption

that a failed component can, and usually does, produce erroneous output, and that the components that

depend on the failed component's output for their input will subsequently produce erroneous output
themselves due to the erroneous nature of their input. In this way, the effect of a specific component

failure/event on other system components and ultimately on the system as a whole may be traced in the

model.

Similarly, the model may be used to identify all the singleton and sets of combinations of nodes

whose failure may lead to the failure of a specific "target" node in the digraph. A digraph model of a

system can give a designer, engineer, or diagnostician a pictorial view of how individual or combinations

of failures can propagate through the system and affect other components in the system. The model

in which the propagation is displayed is likely to be similar to structural diagrams of the system, and

this can help the human observer assimilate the effect of individual failures more easily than is possible

with other modeling techniques. This type of intuitive presentation of the information is important for

facilitating understanding of the problem and its consequences by the human operator who ultimately

will be responsible for deciding which actions will address failures that have occurred.

Figure 1 shows an example system and a digraph model for it. The system consists of a spaceborne

processor which performs monitoring of the spacecraft's operational status and reports its findings to

a ground control station on earth. Within the spacecraft, the data are sent over a bus to a pair of

redundant transmitters that both transmit to the ground receiver. The ground control station can receive

the data successfully if either one of the transmitters is operational. The bottom portion of figure 1

shows a digraph model of the system. The node labeled "ground receiver" represents the event where

SYSTEM:

Primary transmitter

Spaceborne_ I I I

processorj L----_ '1 I

Backup transmitter

Ground

receiving
unit

DIGRAPH model of ground receiving a message:

Primary transmitter

Ground receiver
Processor Data bus

Backup transmitter

Figure 1. Schematic diagram and digraph model for an example system.

the groundcontrol stationis unableto receivethespacecraft'sdatasuccessfully.The digraphindicates
that a failure of the processorcould preventacorrecttransferof dataover thebusfrom being initiated.
Eithera datatransferfailure or a busfailure couldcausethedatato be incorrectlyreceivedfrom thebus

by eitherof the two transmitters.Eithera datareceptionfailure by the transmitter,or a failure within
the transmitteritself could causethe transmitterto incorrectlysendthe datato theground receiver.A
failure to correctlyreceivethedatamight becausedeitherby both transmittersbeingunableto transmit
thedataor by the failure of the groundreceiveritself. Thusafailure in anyof thenodesof the digraph
(indicatedby marking the node)canand probablywill propagatethroughthe systemas indicatedby
the directedarcsthroughthedigraph.

Fault Trees

Fault trees are another type of graph-based model of system behavior. A fault tree model of a

system consists of a number of basic events depicted by circles, a number of intermediate events depicted

by boxes, a number of logic gates that express various combinations of basic and intermediate events,

and a number of arcs which connect the basic and intermediate events to gates. Basic events represent

fundamental events such as the failure of a single system component. Intermediate events usually

represent events like the failure of a subsystem. For our purposes here we are primarily interested in

a class of fault trees which contain only two types of gates: AND gates and OR gates. Each gate has

a number of input arcs which originate at an event (basic or intermediate) or at the output of some

other gate. Each gate also has one output arc which goes to either an intermediate event or to one or

more other gates. An AND gate produces an output only if all of its input events occur. An OR gate

produces an output if any of its input events occur. Any event or gate output may serve as an input to

more than one gate, and such an event is termed a repeated event.

Fault trees model a system by depicting how various combinations of individual component/

subsystem failures act together to affect the system as a whole. The fault tree usually has a single

root event at the top of the tree, called the undesired or top event, which represents the primary failure

event of interest. Often the top event represents catastrophic failure of the entire system. The fault

tree model is developed by examining all the basic or intermediate events, which individually or in

combination with other events, may cause the top event to occur. The top event then becomes the

output event of an OR gate whose inputs are all the intermediate events which by themselves could

cause the top event to occur. If the top event can only be caused by the combined occurrence of

some set of intermediate events, the top event will instead be the output event of an AND gate whose

inputs are those intermediate events. The fault tree is then developed by recursively examining each

intermediate event in turn and determining whether it is the output of an AND gate or an OR gate.

This recursive development continues until all intermediate events have been decomposed and all of

the most fundamental events in the fault tree are basic events. The development of a fault tree model

is consequently a "top-down" decomposition process. This is in contrast to the development process

for a digraph model which is a "bottom-up" forward-failure propagation process from the individual

components to the more complex subsystems and ultimately the system as a whole. The perspectives

of the two model types are complementary.

Figure 2 shows a fault tree model for the example system of figure 1. The top event of the fault

tree denotes the failure of the ground control station to successfully receive the spacecraft's data. The

4

I I

I I

i Spaoe rn'un'tI r OrounO1failure _.recelver failedJ

I I

I Processingsystem failure I I Transmittingsystem failure I

I I I I

(Processor II Data I [Primary _I Backup 1failed bus failed xmtr failed xmtr failed

Figure 2. Fault tree model for the example system.

failure to successfully receive the data might be due either to a failure of the spaceborne subsystem or

to a failure of the ground-based subsystem (the receiver). A failure of the spaceborne subsystem could

be due either to a failure of the transmitter subsystem or to a failure of the processing subsystem. A

failure of the transmitter subsystem requires the failure of both transmitters. A failure of the processing

subsystem could be due to a failure of either the processor or the bus.

3 FDIR USING GRAPH MODELS

In this section we review some existing work which has been done on the subject of fault man-

agement using graph-based models. In the previous section we described two graph-based modeling

methods: digraphs and fault trees. ':['he fault management methods we are about to describe are all

procedures for analyzing a model of the system which is either a digraph or a fault tree. In order to

begin the diagnosis process, all of the methods below require identification of components whose status

is observable (for example sensors) and information about which sensors are operating correctly and

which are not. This information may be obtained through user inputs to the model or by automated

real-time monitoring of sensor outputsl _ This information is presented to the graph-based models in

the following form: sensors that are known to be "good" (output within operational limits) are said to

be normal alarms; sensors that are known to be "bad" (output outside of operational limits) are said

to be abnormal alarms. Some of the diagnosis methods described below have the capability to take

into account the propagation time of failures from one component to another. For these methods the

normal and abnormal alarms include the latest time at which the sensor is known to be good or bad.

Once the normal and abnormal alarms have been specified, the result of the analysis of the model is

the identification of a set of components (both sensor and non-sensor) whose failure could account for

a set of observed symptoms exhibited by the system. At the end of this section we present our most

recent fault management method, which is based on the use of both digraphs and fault trees.

5

Digraph Fault Management Using FEAT

A digraph modeling software tool called Failure Environment Analysis Tool (FEAT) was developed

by Lockheed Engineering and Sciences together with NASA Johnson Space Center (JSC) (ref. 1). FEAT

allows a user to build and analyze a digraph model of a complex system. The program has a graphical

user interface which displays a digraph and uses color highlighting of digraph nodes and AND gates to

pictorially display the results of digraph analyses. Among the major features of FEAT are the source

and target operations. When the user selects or marks a digraph node and performs a source operation,

FEAT identifies all nodes in the digraph that would become marked as a result of the propagation of the

marking of the selected node. The marking of a digraph node corresponds to a failure of the component

represented by the node. When a digraph node is selected and a target operation is performed, FEAT

identifies all digraph nodes from which a marking could propagate to the selected node. Where the

marking of a single digraph node could propagate to a target node, the single node is called a singleton

and is highlighted in red on the digraph diagram. Where the coincident marking of two distinct nodes

is required to cause the target node to be marked, the two nodes together are called a doubleton and

are highlighted in blue. The user may therefore identify which digraph nodes affect or are affected by

a selected individual node through the use of the target and source operations, respectively.

Using this tool, researchers at JSC and McDonnell Douglas Space Systems Company have devel-

oped a method of identifying a set of digraph nodes (representing failure of individual system compo-

nents), which could potentially account for a symptom exhibited by the system in the form of a marked

target node in the system model (ref. 2). The method starts by identifying sensors that fall into three

categories: sensors that are known to be good (the normal alarms), sensors that are known to be bad

(the abnormal alarms), and sensors whose status is unknown due to corruption of their output data or

which are not relevant to the current operational mode. Using these sets of observable components, the

failure propagation relationships expressed in the digraph model are used to determine possible causes

for bad sensor readings and components that must be working to provide the good sensor readings. This

information is used to successively prune the set of candidate components (both sensor and non-sensor

components), which might be responsible for the symptom represented by the target node. The pruning

process makes use of the digraph analysis operations available in FEAT and may be followed picto-

rially by the analyst. It proceeds by successively identifying subsets from the initial set of candidate

components that may be inferred to be working correctly from the failure propagation information in

the digraph. At this time the user must manually perform the identification steps and prune the set of

candidate components as new subsets of correctly operating components are identified. Future plans

call for this manual procedure to be automated.

Interactive Digraph Analysis ODA)

David lverson has developed a computer program that implements a variation of the digraph fault

diagnosis method described above. The primary difference between the two methods lies in the fact

that Iverson's method uses cut sets of digraph nodes to identify and prune sets of candidate components

which could be responsible for causing the system's failure symptoms, whereas the JSC/McDonnell

Douglas method uses the singleton/doubleton identification features of FEAT to identify and prune the

sets of candidate components. A cut set for a digraph node is a set of nodes which, when all marked,

cause the digraph node itself to be marked. We note here that neither method takes into account the

6

time requiredfor failures to propagatethroughindividual digraph nodes,so no timing information is
given aspartof thenormal/abnormalalarmspecifications,andpropagationtimeis not consideredin the
diagnosisprocess.Iverson'smethodworks in the following way: for eachdigraphnodethatrepresents
a normalalarm (a sensoroperatingcorrectly)all of thecut setsof thatnodearefound. Next, all nodes
that representabnormalalarms(sensorswhoseoutputis outsideof operationallimits) are identifiedand
all madeinputs into a singlenew AND gate. Theoutput nodeof this AND gatedenotesthe observed
failure symptomsexhibitedby the system.The cut setsfor the outputnodeof this new AND gateare
thenfound. Thesecut setsrepresentall thepossiblecausesof thesymptoms.The actualcause(s)of the
observedsymptomswill be somesubsetof thesecut sets.The AND gatecut setsare thencompared
with the combinedcut setsfor the normalalarm nodes,and any cut set of the AND gate for which
one of the normal alarmcut setsis a subsetis thrown out. This last step is justified by the following
reasoning:if a cut setof theAND gateis a true causeof the failure symptoms,thenall the eventsin
thecut setmust haveoccurredin orderfor theAND gateoutputeventto occur.However,if a subsetof
theeventsin thecut setarealsoa cut setfor a normalalarm, thenthoseeventscannot haveoccurred.

Therefore,anycut set of the AND gatewhich containsasa subseta normalalarmcut set cannot
haveoccurredandhencecannotbeacauseof thesystemfailuresymptoms.Suchacut setcanbepruned
from the set of candidatecausesof the failure. Any AND gatecut setsremainingafter this pruning
processidentify the possibletrue causesof the systemfailure symptoms.This methodis implemented
as part of a generalprogramfor analyzingdigraphscalled the InteractiveDigraph Analysis program
(IDA). IDA differs from FEAT in that it is basedon cut setsinsteadof matrix methodsand lacks the
graphicaluser interfacethat FEAT offers.

Method of Narayanan and Viswanadham

Narayanan and Viswanadham describe an approach to fault management which involves an inte-

grated use of digraphs, fault trees, and an AI production rule inference engine (ref. 3). They advocate

dividing the diagnosis process into two phases: a failure source location phase and a failure cause

identification phase. Each of these phases are analyzed separately using different underlying system

models. The failure source location phase involves constructing a hierarchicial model of the system

using multi-level digraphs. A symptom of abnormal system behavior is then expressed by the marking

of a target node (failure of a subsystem) in the highest order level of the digraph model. The digraph

on the highest level is then analyzed to find the subsystems (represented by digraph nodes on that level)

whose failure could lead to the marking of the target node. Each such subsystem is then optionally

modeled in greater detail by another digraph at a lower level of detail resolution. The digraph analysis is

then recursively performed on these lower level digraphs. This recursive decomposition/analysis process

is continued down until eventually the lowest level of modeling resolution that is of interest to the user

is reached. Once digraph nodes whose marking could lead to the marking of the top level target node

are identified on that lowest level, cause-consequence models of failure are constructed to capture the

failure modes of the identified candidate components/subsystems. The cause-consequence models are

augmented fault trees. The fault trees are augmented to contain heuristic and systematic knowledge

about temporal, probabilistic, and causal characteristics of faults that occur in the component/subsystem.

Once constructed, the augmented fault trees are used to generate production rule knowledge bases for

the components/subsystems. As a final step, the failure cause identification process is invoked to ana-

lyze the production rule knowledge bases to infer what the causes of failure might be. The inferential

7

reasoningproceedsthroughforwardandbackwardchainingoperationson therules,Thisreasoningpro-
cesseliminatesfrom considerationpotentialcausesof failurebasedon thenormalalarms,theabnormal
alarms,the time requiredfor individual failuresto propagatethroughthesubsystems,andinformation
on theimportanceandprobabilityof propagationof failures.

Fault Tree Diagnosis System

David Iverson and Ann Patterson-Hine have implemented a modified version of Narayanan and

Viswanadham's approach to modeling cause-effect relations for failure diagnoses (refs. 4-6). Narayanan

and Viswanadham advocate the use of augmented fault trees to generate a production rule knowledge

base. Inferential reasoning about failure causes is then performed through forward and backward chain-

ing on the production rules in the knowledge base. This approach of representing the knowledge base

with production rules has some drawbacks. One performance-related drawback is the relatively large

amount of overhead processing needed to search through the rule base in the course of forward and

backward chaining. Another drawback is the increased computational resources needed to generate and

store a second representation (the production rules) of the knowledge base that is already completely

represented in the augmented fault tree, !verson and Patterson-Hine addressed these two drawbacks by

developing methods to perform the inferential reasoning processes on the augmented fault tree directly,

thus obviating the need to generate the production rules. They implemented the augmented fault tree

using an object-oriented fault tree paradigm developed by Patterson-Hine (ref. 7). In addition to saving

the effort needed to generate and store the production rules, they found that accessing the information

in the knowledge base was more efficient than searching an indexed rule base, This follows from the

fact that the structure of the fault tree itse!f encodes the production rules of the knowledge base, Each

gate in the fault tree represents a production rule in that the inputs and output of the gate are the an-

tecedents and consequent, respectively, of a production rule in the knowledge base. During a forward or

backward chaining operation, the next rule(s) needed are immediately available by virtue of the implicit

links between rules embodied in the structure of the fault tree. Separate lookup operations on a table

of rules are not required, The resulting diagnosis program is called the Fault Tree Diagnosis System

(FTDS) and permits the modeling and diagnosis of system failure causes with a user-entered fault tree

model. As FEAT does for digraphs, FTDS uses a graphical user interface and displays the course and

results of a diagnosis analysis with color highlighting of the fault tree model. FTDS is implemented

under X Windows in Unix(TM) computing environments.

An Integrated Graph-Based Diagnosis Method

We now describe an integrated graph-based diagnosis approach (IGBDM) to the fault management

problem which is under development by our group at NASA Ames Research Center. Our approach

differs from the integrated approach of Narayanan and Viswanadham in the role played by the digraph.

Narayanan and Viswanadham advocated using an analysis of the digraph to determine fault location

within the system, then feeding the results of that analysis to production rule knowledge bases to

determine the cause of the failure(s) identified by the digraph analysis. In our approach we advocate a

more modest role for the digraph. Like Narayanan and Viswanadham, we rely on an augmented fault

tree knowledge base to provide determinations of causes of failures through appropriate analysis of

the fault tree model. However, we assume that inputs to the augmented fault tree analysis process are

available from the user in the form of a specification of the failure symptoms exhibited by the system, In

8

otherwords,we rely onmonitoringof sensorsand/oruserinputinsteadof aprecursorydigraphanalysis
to provide the temporalstatusinformationaboutsystemcomponentsneededasinput by thefault tree
analysisprocess.The digraphmodelof the systemthen takeson a new role underour approach.We
usea digraphmodel of the systemto aid in the constructionof the augmentedfault treemodel rather
thanasasubjectfor analysis.Themotivationbehindthisstemsfrom concernsrelatedto humanactivity
in building thesystemmodel. Theprocessof building a fault treemodelof a systemis readilylearned,
but is not alwaysan intrinsically naturalprocessandsomay requirethedevelopmentof someexpertise
on the part of the modeler. Digraphs,becauseof their tendencyto be very similar to the schematic
of a system,are often moreeasily developed.This is particularlytrue when the modeleris someone
whosetraining has not includedextensiveemphasisin systemsmodeling. A computerprogramwas
recentlydevelopedto converta digraphmodelinto a fault treemodel (ref. 8). This programpermitsthe
formulationof a systemmodel in themoreeasilyspecifieddigraphformat. The digraphmodel is then
automaticallyconvertedto a fault treemodeland augmentedwith the informationneededfor analysis
to determinea diagnosis.If the digraphandaugmentedfault treemodelsarelinked together,the fault
managementadvisorprogramcanperformall analysison an internalfault treemodel while providing
theusertheopportunityto enterthesystemmodelandmonitortheresultsof theanalyseswith a digraph.
This permitstheprogramto interactwith theuservia a modeltypewhich is moreeasilyaccommodated
by the userwhile performingthe analysisfunctionswith a model type moresuited to the computer's
inferentialreasoningprocesses.The implementationof our diagnosisapproachdescribedhereis under
developmentandwill be implementedin a Unix(TM) environmentunderX Windows.

4 EXAMPLE PROBLEM

We now describe the application of our fault management/diagnosis method to an example problem.

We model a real system which is being designed and built. The system is an automated telescope being

built by the Autoscope Corporation. Autoscope builds automated telescopes intended for unattended

operation for extended periods of time in remote areas, such as on secluded mountaintops in the south-

western desert where astronomical observation opportunities are among the best in the United States.

The technology that Autoscope is developing has potential application for future NASA programs using

telescopes on orbiting platforms or on the moon. We begin by giving an overview of how this current

fault management project could fit into a larger NASA program using automated telescopes. We then

describe the specific Autoscope automated telescope used for our study. We next develop the digraph

model of the telescope subsystem chosen for analysis for this study. Finally, we describe the applica-

tion of our fault diagnosis method to determine which specific component failures account for certain

specified symptoms of abnormal system behavior.

Lunar Telescopes

The automated telescope used for our study is a proposed prototype for the Steerable Automatic

Lunar Ultraviolet Telescope Explorer (SALUTE) project, The motivation behind the SALUTE project

is the assertion that it is only a matter of time before humans return to take up permanent presence

on the moon. When they do, it is certain (given the ideal conditions for astronomical observation the

moon offers) that they will bring telescopes with them and initiate major astronomical research projects.

Because relatively little is known about the maintenance and operation of precision mechanical devices

9

in generaland telescopesin particular in the lunarenvironment,it is logical to gain someengineering
experiencein this areabeforemakingsubstantialinvestmentsin largecomplextelescopesandinstalling
themon themoon. The mostobviousway of achievingthis engineeringexperienceis to placesmall,
relativelyinexpensiveautomatedtelescopeson themoonin orderto gaininformationabouthowthelunar
environmentwill affecttheoptical, mechanical,andelectronicequipmentusedin lunar telescopes.The
roleof thesetelescopesis thereforetwo-fold: to evaluatethetechnologyrequiredto construct,maintain,
andoperatelunar telescopes,andsecondarilyto provideworking (albeit relativelysmall) telescopesto
allow lunarastronomicalresearchto begin immediatelyratherthanhaveto wait until humansareready
to establisha permanentpresenceon themoon.

Under the SALUTE project a number of small automatedtelescopeswould be soft-landedat
various locations on the moon. Each telescope would communicate with a control center on earth

through two communications links (a high-bandwidth link primarily for data and a low-bandwidth link

primarily for commands). Researchers on earth would direct the observations made by the telescopes by

uploading commands to the telescope over the communications links, and the telescopes would transmit

the gathered data back to earth over the same links. The telescopes include several computers on board

that are capable both of determining the individual steps required to make the observations (such as

how to locate and acquire a star, or how to make appropriate background and reference measurements)

and also of directing the telescope movements needed to perform the observations. The commands

uploaded from earth can therefore be of a very high-level nature (for example: observe this specific star

every X hours for Y minutes to obtain photometric measurements). The intent is to keep the operational

expense of the system to a minimum, and the project will rely on the use of computer-assisted automated

management systems (for fault diagnosis and management, AI-based planning and scheduling) to keep

earth-based ground control staff and resource requirements very low. The system also is intended to be

widely accessible to researchers from small colleges and possibly even selected high school students.

This will be practical only if the system has a very low overhead cost.

The Autoscope Telescope

The system we chose to analyze for our study is a model AT-16 automated telescope manufactured

by Autoscope Corporation. The telescope is designed as part of an integrated automated observatory

which is capable of performing (without human intervention) all functions required to operate all electri-

cal and mechanical equipment needed for astronomical observation. The goal is to permit astronomers

to direct nightly observations and analyze data obtained from those observations from the comfort of

their offices rather than personally traveling to observatories located in remote areas. This is accom-

plished by enabling the astronomers to issue commands to the observatory over ordinary phone lines

using a PC with a modem in their office. These commands specify what observations to make and how

to make them. The observatory is responsible for making the observations and gathering the resulting

data. The process of carrying out this responsibility requires that the observatory be able to perform

the following functions: scheduling the observations in an appropriate way following whatever priori-

ties are specified, ensuring that observations are made only between sundown and sunrise, monitoring

the weather and closing down if bad weather would damage the telescope or equipment, monitoring

and reporting equipment failures to appropriate human maintenance personnel, and taking appropriate

corrective action in response to equipment failures. Following a night of observations, the astronomer

10

retrievesthe collecteddatafor analysis,againoverordinaryphonelines using a PC and a modem. The

presence of humans in the operation is required only in the event of equipment failures.

Figure 3 shows a diagram of the automated observatory. Two modems are available for reception

of instructions and transmission of data. A master observatory computer interfaces the observatory with

the outside world by mediating and responding to communications to/from the modems. The master

computer communicates with the controllers for the astronomical instruments (photometer and charge

coupled device camera) used for making measurements. These instruments also provide feedback

data to the control computer. The master computer also communicates with a telescope/observatory

control computer which is responsible for most of the functional operation of the observatory. The

telescope/observatory control computer communicates with the weather station to monitor the weather

conditions and close down the observatory if damaging weather conditions develop. Through inter-

mediary telescope and observatory controllers, the control computer also directs the movements and

functions of the telescope itself and observatory enclosure, power supplies, and environmental control

devices. Humans (when present) can communicate with the master computer through a keyboard and
monitor.

Figure 4 shows a picture of the telescope which is the subject of our study. Figure 5 shows a

simplified diagram of the telescope. We now offer a very brief description of the major features of

the telescope that are relevant to the model we are using for our study. The main components are a

large primary mirror and a smaller secondary mirror, both contained in a protective tube. Light enters

the tube at the top and travels to the bottom of the tube where it reflects off the primary mirror. The

light next travels back to the top of the tube where it is reflected back yet again off the secondary

mirror. It then travels back to the bottom of the tube and through the middle of the primary mirror to

measuring instruments located behind the primary mirror. Generally only one instrument receives the

incoming light at a time; however the light may be directed to as many as four different instruments

by an instrument selection device. The directional orientation of the tube may be moved, allowing the

telescope to be aimed anywhere in a large expanse of the sky. Directional pointing of the telescope is

accomplished by three stepper motors (X, Y, and Z) which are under computer control. Three additional

motors (T, U, and V) control movements of the secondary mirror, which may be adjusted independently

of the primary mirror and the rest of the telescope body. The stepper motors are supplied by two

power supplies, a 5-Volt and a 24-Volt power supply. The T, U, and V motors are supplied by both

the 5-Volt and the 24-Volt power supply, providing for a limited amount of redundancy (if the 24-Volt

power supply fails, these motors can still operate, but will move more slowly when supplied by only

the 5-Volt power supply). The X, Y, and Z motors are supplied only by the 24-Volt power supply and

do not have the benefit of any redundancy with respect to power.

For the purposes of this segment of the study we decided to concentrate our attention on the

TCS-200 telescope controller subsystem of the overall telescope. The telescope controller is the most

complex subsystem in the telescope, and is responsible for directing telescope operations and movements

in response to commands from the control computer. It is represented by the box labeled "Telescope

Controller" shown in figure 3. Figure 6 shows a simplified schematic of the telescope controller subsys-

tem. The controller subsystem consists of three parts: a control card which plugs into an expansion slot

within the telescope control computer (an IBM 386 class PC), the controller unit itself, and a number

of peripheral sensor and motor devices which actually perform the operations on the telescope. The

11

-- Phonellnel

_UPS

-- Phonsllne --_ Modem L.,.

= --I = I-

Telescope/
observatory
control
computer

]_ _r PS_

Master I
computer I--

UPS 1__ CCD
: control

"--"-I computer

Monitor/relay C

I CCD

camera

Keypad I

_ r

IMon_lt_r I iKeyboard !

UPS

I

Air dryer

Photometer Photometer
controller

AC

Telescope U

controller R

_UPS

Telescope I

I--i I

AC UPS

Air
conditioner Power controller

Line

stop

Figure 3. Schematic diagram for an automated observatory system.

telescope control card (left side of (fig. 6)) provides the controller subsystem's interface with the control

computer. The controller itself (see center of (fig. 6)) contains a 24-Volt and a 5-Volt power supply,

a number of various drivers for the peripheral sensors and motors, and a junction board which routes

signals received from the telescope control card to the individual drivers. The drivers are connected

through ports to the sensors and motors located on the telescope frame shown in the right side of

Figure 6. There are a number of probe points located throughout the controller junction board at which

signals may be monitored by a diagnostics subsystem (one is currently under development by Autoscope)

or by a human technician. The motors include devices like the various stepper motors which move the

12

Figure4. Automatedtelescope.

telescopeframealongspecificdirectionsandarenecessaryfor positioningthe telescopesothat the lens
is centeredon the specificobjectto beobserved.

System Model

Figure 7 displays the digraph model for the simplified telescope controller subsystem. The general

structure of the digraph parallels the topological structure of the schematic of figure 6 fairly closely.

The digraph indicates that failures can propagate from the control computer digraph node (labeled "Tel-

CntrlComp") to the telescope control card (digraph node labeled "TelCntrICard"), through the various

ports to the controller junction board (digraph node labeled "JB"). From the junction board, failures can

propagate through the various ports to individual drivers, then on to the individual peripheral devices.

The propagation of failures therefore can be seen to follow the structural and electrical connections

within the subsystem as depicted in the schematic. There are a number of disconnected digraph seg-

ments that depict the effect of propagation of failures in the power supplies. The various drivers and

peripheral devices are dependent on One or the other of the two power supplies, so the failure of one

13

Structural --
tube

Measuring
Instrument
(CCD camera)

I I
Incoming

I light I

: o.anO teooermotor.
__ Secondary mirror

/ I I \

/ I J \ Ystepper motor

[I Primary mirror

Measuring
Instrument
(photometer)

Instrument
rotator
(and Z stepper
motor)

X stepper motor

Figure 5. Diagram of the automated telescope.

power supply will determine which subset of the drivers and/or devices will be affected. Since the

telescope controller subsystem used for this example has been simplified for the purposes of illustration,

not all failure modes of the telescope controller are reflected in the system model presented here.

Fault Diagnosis Using the Model

The digraph model shown in figure 7 was developed with the aid of the FEAT digraph modeling

tool. In order to perform diagnosis processing, the digraph model is first converted to a fault tree. This

is accomplished by a conversion program (ref. 8) which automatically generates an equivalent fault tree

model from a digraph. Figure 8 shows the fault tree obtained from the conversion of the digraph in

figure 7. Briefly, the conversion process proceeds in the following way: for each node in the digraph,

an OR gate is created in the fault tree which contains the same label as the digraph node. The OR gate

has one basic event input which denotes an independent failure of the component represented by the

digraph node. The label of the basic event is the label of the digraph node with "-F" appended. The

OR gate also has one input for each incoming directed arc to the digraph node being converted. Each

of these fault tree input events represents a propagated failure or event corresponding to the individual

14

TelCntrlComp

TelCntrlCard

EthrNetCard

I MonltorCard

Keyboard

m

24V_Power

TCS-200 Telescope Controller

JB

X_uStep_Drv

Y_uStep_Drv

Z_uStep_Drv

T_Bilev_Drv

U_Bllev_Drv

V_Bilev_Drv

 zst,00.,I

D-DC]-tvs",0"rI

Figure 6. Schematic diagram for the TCS 200 telescope controller subsystem.

incoming digraph arc and the digraph node from which it originates. This procedure reflects the fact

that each node of the digraph represents a failure that may be due either to a failure of the component

itself or a failure propagated along one of the inputs to the digraph node. The AND gates in the digraph

are converted directly into AND gates in the fault tree. The fault tree in Figure 8 has been slightly

modified to remove some redundant event nodes that are produced by the automatic conversion process,

but which have no meaning in the diagnosis process.

Once in the form of the fault tree, the FTDS program may be used to perform diagnostic analyses.

FTDS displays the fault tree on the user's screen and permits the user to identify components/subsystems

which are known to be working at specific times (normal alarms) and also components/subsystems which

are known to be failed at specific times (abnormal alarms, or the symptoms). From this information,

15

TelCntrlComp

?
TelCntrlCard

JB

X_uStep_Drv

Y_uStep_Drv

Z_uStep_Drv

,©

Bilev Drv

X_Stepper

(_ "0 X-uStep-Drv

Y Stepper /

__ 24V Power_ ._Oy uStep Dry

Z Stepper "_

=- O /_DTCS_ Fail "X_Oz uStep Drv

T_SteppeS//

"0 / / T Bilev Dry

"_" / / 24V_Power -O-

U_Stepper/ v_ -- /

(_/ // 24V_and_5V U_Bilev Drv

/ or
V Stepper O = ___V DW

U_Bilev_Drv

",©

V Bilev Drv

Figure 7. Digraph model for the TCS 200 telescope controller subsystem.

FTDS first uses forward and backward-chaining through the production rules implicit in the structure of

the fault tree to determine all the components and subsystems that must be working and the latest times

at which they must be working in order for the normal alarms to be satisfied. FTDS then uses backward-

and forward-chaining through the fault tree to determine which must have failed (and the latest times at

which they must have failed) in order for the abnormal alarms to be accounted for. The result is a set of

candidate components whose failure could be the cause of the observed abnormal alarms. If more than

one cause is identified, further investigation in the form of diagnostics may be needed to identify the

component(s) whose failure was the actual cause of the symptoms (abnormal alarms). The conversion

process produces a fault tree whose basic event nodes have a one-to-one correspondence with the nodes

of the digraph. As a consequence of this, the results of the diagnosis may be transferred back to the

digraph and displayed pictorially to the user. The user may then see, through color highlighting, the

results of the diagnosis on both the digraph and the system schematic.

As a simple example, consider the digraph and fault tree models of the TCS 200 controller sub-

system shown in figures 7 and 8. Suppose it has been determined (either through monitoring of sensors

or human observation) that at time interval 5 the T Stepper motor (digraph and fault tree nodes labeled

T_Stepper) is not operating correctly. Suppose further that it is known through monitoring that at time

interval 4 the junction board (digraph and fault tree nodes labeled JB) is operating correctly. Our diagno-

sis will proceed under the assumption that it takes one time unit for the effects of a failure to propagate

through each node in the digraph. In terms of the fault tree this means that a failure takes one time unit

16

Y Stepper-F Z_Stepper-F

_BI!ev_Drv_

I
C TelCntrlCard-F) (_TelCntrl!omp-F)

,': q

Z_uSlep_Drv-F

24V Power-Fi __
V_Stepper-F

Figure 8. Fault tree model for the TCS 200 telescope controller subsystem.

17

to propagatefrom a gate to the gate immediatelyaboveit, with the exceptionthat propagationfrom
basiceventslabeled"<node>-F" to anOR gatelabeled"<node>" immediatelyabovethebasicevent,
takeszerotime units. The assumptionof a one-unitpropagationtime is arbitrary.Thepropagationtimes
may in fact be individually specifiedfor eachnodein the fault treeto moreaccuratelypredict actual
propagationconditions. The diagnosisprocessis begunby telling FTDS that the system/subsystem
representedby the top nodeof thefault treewasobservedto havefailed at a specifiedtime (time 10).
FTDSbeginsby examiningall of the normalalarmsthathavebeensetandinferringwhich components
musthavebeenworking at what latesttime in order for the normalalarmsto havebeenableto exist
asspecified. If the junction boardwasknown to be operatingcorrectlyat time interval4, the telescope
control computer(labeledTelCntrlComp)andthe telescopecontrol card(labeledTelCntrlCard)hadto
beworking correctlyat (andbefore)time intervals2 and3, respectively.Theseare theonly inferences
that canbe madebasedon the normalalarms.FTDSnext considerstheabnormalalarms,which here
includesonly the failure of the T_Stepperat time interval 5. This failure might be causedeither by
the failure of the steppermotor itself (node labeledT_Stepper-F)or by the failure of the T-Bilevel
drive (node labeledT_Bilev_Drv). The failure of the T-Bilevel drive might be causedby the failure
of thedrive itself (nodelabeledT_Bilev_Drv-F)or by the failure of bothpowersupplies(nodelabeled
24V_and_5V).The event representedby the nodelabeled24V_and_5Vwill only occur if the events
labeled5V_Power-Fand24V_Power-Fbothoccur.Hence,the setof candidatecausesfor theabnormal
alarmsis determinedto be { (T_Stepper-Fat time 5 or before),(T_Bilev_Drv-Fat time 4 or before),
(5V_Power-Fat time 3 or before),(24V_Power-Fat time 3 or before)}. This setcanbeprunedfurther
if moreinformationis knownin termsof normalalarms.For example,if it is knownthat theV Stepper
(nodelabeledV_Stepper)is operatingcorrectlyat time interval5, then the two powersuppliescanbe
eliminatedascandidates(theymustbeworking at time 3 or theV steppermotor couldnot beworking
at time 5).

As illustratedin theabovediscussion,theresultsof thediagnosisis asetof componentfailuresthat
arepossiblecausesof theobservedsymptomsasexpressedby normalandabnormalalarms.Generally,
theavailability of moredetailednormaland abnormalalarminformationmakespossiblemorespecific
or accuratediagnosesin that smallersetsof candidatecomponentfailurescanbe identified. Ideally,the
normaland abnormalalarminformationis obtainedfrom continuous,automatedmonitoring performed
on the observablesystemcomponentsto provide the maximumamountof informationon which the
diagnosiscanoperate.Onceasetof possiblecausesis identified,thehumanoperatoris ableto perform
diagnosticson the candidatesto further identify the exact causeof the system'sfailure symptoms.
Alternatively, theoperatorcanalter theoperationof thesystemto bypassor minimize theeffectof the
potentiallyfaulty componentsidentifiedby the diagnosis.

5 APPLICATION OF IGBDM TO A GENERAL DATA SYSTEM

The initial role we envision for our automated fault management computer program (Integrated

Graph-Based Diagnosis Method) applied to general data management systems is one of an advisor

to human operators of the system. The system digraph model will have been built by the engineers

responsible for designing the system itself. Displays of the digraph model, the system schematic(s), and

optionally the fault tree model would be available to system operators on workstation monitor screens.

The outputs of the sensors in the system would be connected to monitoring devices that could signal the

diagnosis program if any out-of-tolerance conditions arise. Automated monitoring of this type would

18

beespeciallyuseful for largecomplexdatamanagementsystems.Upon theoccurrenceof one or more
componentfailures,thediagnosisprogramwould readthesymptomdata(suppliedby thesensormonitors
in terms of normal and abnormalalarms)into the digraph/faulttreemodel and initiate the diagnosis
process.The resultsof the diagnosiscould bedisplayedsimultaneouslyon the fault tree,digraph,and
schematicviews of the systemfor the operatorby usingcolor highlightingof the componentscausing
the failure. The diagnosissystemcould thenoptionally display suggestionsto the operatorson such
mattersaswhat further diagnostictests(if any)wouldbe appropriateto run, how the systemcould be
reconfiguredto circumventthe failed components,and how operatingproceduresshouldbe modified
to work aroundthe effect of thefailures. This informationmaybe simply retrievedfrom a previously
establishedoperatingproceduresdatabaseby keying on the remainingoperationalconfigurationof
the system.Further enhancementsof the advisoryfunction may be providedby connectingthe fault
treemodelwith a hypertextsystemcontaininginformationaboutcomponent/subsystemspecifications
and characteristics,and operatingprocedures.This would provide the operatorswith an interactive
information resourcefor exploringways to evaluatetheseverityof thefailuresand their effectsand to
defineor identify potentialwork-aroundsto them.

The eventualintendedrole of IGBDM is as anautomateddiagnosisandrecovery system.In this
capacityIGBDM will be capableof monitoring of systemsensorsand detectionof incorrect sensor
outputs,diagnosingthe causesof failure symptomsobservedthroughsensormonitoring, reconfiguring
thesystemto bypassfailed componentsand/oralteringtheoperatingprocessesof thesystemto mitigate
the effectof the failures. Sucha capabilitywould increaseboth the reliability andthe performanceof
systems,particularly systemsfor which humanmaintenanceandrepairareavailableonly rarely,or not
at all. To achievethis level of automation,our diagnosisand recoverycomputerprogrammust have
someadditionalcapabilitiesbeyondthosealreadydescribed.We discussthe mostimportant of these
additionalcapabilitiesin thenext section.

6 FUTURE WORK

We have described in a previous section the scope of the fault management problem, which is

addressed by our current implementation of our fault diagnosis/management approach. In this section

we identify some additional aspects of the fault management problem, which we hope to address in

future development of our current work.

The implementation of our approach to fault diagnosis and management so far has concentrated

on primarily passive processing of input data from sensors and/or human operators. In many cases this

alone may be sufficient to arrive at a satisfactory diagnosis of the component/subsystem failures that are

affecting the system. However, there may be situations in which a more active process is useful. The

passive analysis will identify a number of components/subsystems that may have failed. Once these

candidate subsystems are identified, further diagnostics may be required to positively confirm which sub-

systems have failed and which have not. Because the structure of the fault tree encodes the "production

rules" in the knowledge base that are necessary for inferential diagnostic reasoning, the identification

of a failed subsystem (consequent of a rule) corresponds to the selection of an intermediate event node

in the fault tree which represents the subsystem of interest. The object-oriented representation for the

fault tree we are using lends itself very well to incorporating active procedures into the analysis process.

For example, the object which denotes the subsystem of interest may contain a pointer to a subroutine

19

that is to be executedwheneverthe subsystemis identified as potentially failed. The subroutine might

implement diagnostic routines specifically designed to ascertain the operational status of the subsystem.

Alternatively, the subroutine might initiate an automatic reconfiguration intended to bypass the failed

subsystem or modify its operation so that it is more consistent with an impaired operational status. The

subroutine might even serve both functions--running an appropriate diagnostic suite on the candidate

subsystem, then initiating reconfiguration only upon confirmation that the subsystem has experienced

a failure. Alternatively, the subroutine's function may be limited to printing recommendations for cor-

reciive action to the human operators of the system. In this way, the diagnostic analysis process can

include active components that can be incorporated in a natural way due to the nature of the augmented

fault tree model of the system.

There is another aspect of potential interest that may be readily integrated into the diagnosis analysis

process, largely because of the nature of augmented fault tree models. There may be situations in which it

would be advantageous to be able to integrate reliability evaluation with fault diagnosis. This capability

might assist in deciding which set of candidate faults to investigate first, or which set of competing faults

should receive priority in devising work-around procedures. Fault trees are a well-established reliability

modeling technique. The diagnosis method we advocate here utilizes fault trees in a capacity other

than their traditional reliability modeling role. The object-oriented structure we use for the augmented

fault tree makes it easy to accommodate both diagnosis and reliability modeling simultaneously within

the same fault tree model. Each object that represents an event in the fault tree, whether basic or

intermediate, needs only to include a field to contain information about the component's failure rate or

the event's probability of occurrence. As a consequence, reliability evaluation and fault diagnosis can

easily be integrated together in a natural way. We hope to be able to extend our fault diagnosis program

to incorporate both reliability modeling and active diagnosis processing in future development of our

fault management/diagnosis program.

7 CONCLUSION

We have described a new method for automated fault management using graph-based models. Our

method uses both digraphs and fault trees as underlying system models for the analysis process. This

method is one that has evolved from a number of previously existing methods which use graph-based

models. Our method is suitable for application to general data management systems. It is intended to

assist the operators of such systems in assessing the causes of system failure symptoms and to decide

on appropriate corrective action to take in response to the system impairment(s). We have presented

an example application of our fault management method to illustrate its use. We are in the process of

implementing this method in the form of a computer program running under the Unix(TM) operating

system and the X Windows user environment. We are also exploring the development of more expanded

roles for this methodology, including topics such as the integration of our fault diagnosis method with

reliability modeling methods.

20

8 REFERENCES

1. Miller, Jim: FEAT User's Manual (Draft). Lockheed Engineering and Sciences Rep., 1991.

2. Clark, Colin; Jowers, Steven; McNenny, Robert; Culbert, Chris; Kirby, Sarah; and Lauritsen, Janet:

Fault Management for the Space Station Freedom Control Center. In Proceedings of the 30th

Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6-9, 1992.

3. Narayanan, N. Hari; and Viswanadham, N.: A Methodology for Knowledge Acquisition and

Reasoning in Failure Analysis of Systems. IEEE Trans. Systems, Man, and Cybernetics,
vol. 17, no. 2, 1987, pp. 274--288.

4. Iverson, David L.; and Patterson-Hine, Francis A.: A Diagnosis System Using Object-Oriented

Fault Tree Models. In Proceedings of the Fifth Conference on Artificial Intelligence for Space
Applications, Huntsville, AL, May 22-23, 1990.

5. Iverson, David L.; and Patterson-Hine, Francis A.: Object-Oriented Fault Tree Models Applied to
System Diagnosis. AAIC Paper, April 1990.

6. Patterson-Hine, Francis A.; and Iverson, David L.: An Integrated Approach to System Design,
Reliability, and Diagnosis. NASA TM-102861, 1990.

7. Patterson-Hine, Francis A.: Object-Oriented Programming Applied to the Evaluation of Reliability
Fault Trees. Ph.D. Thesis, Univ. of Texas at Austin, 1988.

8. Iverson, David L.: Automatic Translation of Digraph to Fault Tree Models. In Proceedings of the

Reliability and Maintainability Symposium. Las Vegas, NV, January 21-24, 1992.

21

Form Approved

REPORT DOCUMENTATION PAGE oM8No.o7o4-o188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aipect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Direclorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCYUSE ONLY (Leave blank) 2. REPORT DATE

September 1993
4. TITLE AND SUBTITLE

Fault Management for Data Systems

3. REPORTTYPEANDDATESCOVERED
Technical Memorandum

6. AUTHOR(S)

Mark A. Boyd, David L. Iverson, and F. Ann Patterson-Hine

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

S. FUNDING NUMBERS

476-14-03

8. PERFORMING ORGANIZATION

REPORT NUMBER

A-92147

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM- 103953

11. SUPPLEMENTARY NOTES

Point of Contact: Mark A. Boyd, Ames Research Center, MS 269-3, Moffett Field, CA 94035-1000

(415) 604-3678

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category - 51

12b. DISTRIBUTION CODE

I

13. ABSTRACT (Maximum 200 words)

We consider issues related to automating the process of fault management (fault diagnosis and response)

for data management systems. Substantial benefits are to be gained by successful automation of this process,

particularly for large, complex systems. We advocate the use of graph-based models to develop a computer-

assisted fault management system. We begin by describing the general problem and outlining the motivation

behind choosing graph-based models over other approaches for developing fault diagnosis computer

programs. We review some existing work in the area of graph-based fault diagnosis, and offer a new fault

management method which we have developed from existing methods. We apply our method to an automatic

telescope system intended as a prototype for future lunar telescope programs. Finally, we describe an

application of our method to general data management systems.

14. SUBJECT TERMS

Fault management, Graph based models, Automated diagnosis

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified
NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified
i "

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

22
16. PRICE CODE

A02
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89) "
Prescribed by ANSI Std Z39-1S

