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Summary and Conclusions

We describe the use of simulation and contrast it to
analytical solution techniques for evaluation of analytical
reliability models. We also discuss the role importance
sampling plays in simulation of models of this type. We
next describe the simulator tool we use for our analy-
sis. Finally, we demonstrate the use of the simulator tool
by applying it to evaluate the reliability of a fault toler-
ant hypercube multiprocessor intended for spacecraft de-
signed for long duration missions. We use the reliability
analysis to highlight the advantages and disadvantages of-
fered by simulation over analytical solution of Markovian
and non-Markovian reliability models.

1. INTRODUCTION

Recent work in the development of reliability analysis
tools has produced a number of software packages that al-
low complex system behavior to be expressed with analyt-
ical models. The systems to which these modeling meth-
ods are applied often are complex fault tolerant comput-
ing systems designed for very high reliability. However,
these systems can exhibit certain types of system behav-
ior that require analytical models for which feasible ana-
lytical (numerical) solution techniques are not currently
available. In these situations the existing analytical mod-
eling framework may be enhanced to allow simulation of
the analytical model (i.e. a fault tree or Markov model)
as a replacement solution method to the traditional an-
alytical solution techniques for the model. This is the
approach that we follow in this paper.

The very large number of trials needed to obtain sta-
tistically significant results historically has been a signifi-
cant problem for the use of simulation to model complex,
highly reliable fault tolerant systems. Recent efforts to
overcome this problem have produced new modeling tools
capable of obtaining acceptable results with a reasonable
number of trials through the use of a variance reduc-
tion technique called importance sampling. New modeling
tools which incorporate this technique have been designed

to be compatible with the Hybrid Automated Reliabil-
ity Predictor (HARP) modeling tool[9], which is itself a
component of the HiRel package of reliability modeling
tools[1]. HARP solves the same types of models as the
simulator, but uses analytical (numerical) solution tech-
niques instead of simulation.

As is often the case, the development of the new mod-
eling tool we describe here was driven by the needs of a
specific reliability analysis project: the use of hypercube
multiprocessors for highly reliable guidance, navigation,
and control (G,N,& C) systems for long duration manned
spacecraft. We are interested in exploring the use of a
fault tolerant hypercube architecture that can use either
hot or cold spares. It is clear from preliminary studies
that the use of hot and cold spares with the traditional
constant failure rate model will not meet the high relia-
bility requirement for long duration space missions with-
out onboard repair[11, 12, 19]. Recently acquired empiri-
cal data provide convincing evidence that decreasing fail-
ure rates are common in spacecraft applications[10]. For
these reasons, we want to be able to include decreasing
failure rates in our reliability analysis. The inclusion of
decreasing failure rates with cold spares requires the use
of a non-Markovian reliability model which is substan-
tially more difficult to solve analytically than a Marko-
vian model that assumes constant failure rates. Given
the current state of the art, analytical solution of such
non-Markovian models generally is tractable only for very
small simple models, whereas the model of the above hy-
percube system is very large. The cumulative effect of all
of thése factors led us to the use of simulation modeling.

In this paper we summarize the use of simulation as a
modeling method and describe how it can be applied to
the evaluation of analytical system models. We compare
evaluation of ‘analytical models by simulation to evalu-
ation by analytical solution techniques and describe the
role of importance sampling in our implementation of sim-
ulation. We next describe the simulator itself and the
process of specifying a model for use with it. We then
illustrate the use of the simulator by applying it to a hy-
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percube architecture proposed for a G,N,& C system for
long duration spacecraft. We explore the effect of assum-
ing decreasing failure rates for active and cold processors
within the hypercube instead of constant failure rates,
and demonstrate the advantages that simulation provides
over analytical solution methods for such system models.

2. SIMULATION MODELING FOR RELIABILITY
PREDICTION

The usual method of using simulation to evaluate re-
liability and performance of systems involves building a
computer model of the system, generating events of in-
terest (i.e. component failures), and observing the re-
sponse of the model to the generated events. The timing
and types of events are generated using probability dis-
tributions which are assumed to govern event occurrence.
Values are sampled from the appropriate probability dis-
tributions and are used to specify which type of event oc-
curs next and when that occurrence will be. A sequence
of events is generated in this manner until either the mis-
sion time expires or the system fails. Such a sequence of
events provides one instance of how the system would be
expected to behave in the environment characterized by
the governing probability distributions and is referred to
as a “history” or “trial”. The model is evaluated at the
end of a trial to determine measures of interest such as
whether the system is still operating (reliability) or how
much work was accomplished (performance), etc. This
process is then repeated numerous times to obtain aver-
age valués for the measures of interest and accompanying
sample standard deviations. From probability theory it
follows that as the number of trials increases, the average
value obtained in the simulation approaches more closely
the actual value that characterizes the long run behavior
of the system as expressed by the model. The standard
deviation, which is a measure of the expected closeness of
the simulation average to the actual value, is proportional
to 7‘; (where n is the number of trials)[18]. Hence ob-
taining a highly accurate value for a measure of interest
may require a very large number of trials.

2.1 Analytic Solution Methods vs. Simulation

An alternate approach to reliability evaluation involves
building an analytic (mathematical) model to express the
relevant behavior of the system. A number of different
- analytical model types are in widespread use. One very
successful analytical madel type is the Markov chain and
its generalizations (non-Markovian discrete state models).
These models express system behavior by identifying a
number of distinct states in which the system may be.
The system can be in only one state at a time, and from
time to time makes a transition from one state to an-
other. The distribution of the time the system spends

in individual states and the characteristics of the tran-
sition rates between states differentiate Markovian and
non-Markovian models{13]. Analytical models are usually
solved using either direct or numerical methods, so often
they can give answers with greater accuracy than simula-
tion methods for a comparable amount of computational
effort. However, analytical solution methods suffer from
requiring much more memory storage for data structures
than simulation methods. As a result, models that be-
come too large to be accommodated by analytical solution
methods might still be within reach of simulation tech-
niques. In addition, increasing behavioral complexity in
analytical models requires analytical solution techniques
with increasing computational requirements. Hence to
solve a model of sufficient complexity, an analytical solu-
tion method could require mare (rather than less) execu-
tion time than a simulation method for a comparakile level
of accuracy in the ontpul. In cases like these where the
limitations of analytical solution methods are exceeded,
simulation provides a useful alternate approach.

The drawback to building a computer simulation model
of a system under study is that constructing the model
and validating it is often a complex, time consuming,
and error-prone process. An alternative is to apply sim-
ulation not to a model of the system itself, but to an
analytical model of the system such as a Markovian or
non-Markovian model. With this approach there is of
course the problem of constructing the analytical model.
However, this tends to be easier than constructing a
systern-level simulation model. Also, the topic of ana-
lytical model construction has been addressed by a num-
ber of researchers in the past several years and tools
have been created to assist in model construction (see [3]
and [4] for brief surveys of tools for automated Markov
model construction). The approach we have chosen for
the current study applies simulation to Markovian and
non-Markovian models of the hypercube multiprocessor
system. This allows us to capitalize on previous work
performed by the authors on the hypercube system using
Markovian models(5] and permits us to extend the scope
of that work.

2.2 Simulation for Evaluation of Markovian and non-
Markovian Models

Markovian and non-Markovian discrete-state models
can be evaluated by simulation in the following way. Each
trial represents a single traversal path among the states
of the model. The common beginning point for all trials
is at an initial suate in which all system components are
assumed to be operating correctly. Upon entry into each
state, the process is begun for determining the time of
transition out of the current state and which state the
system goes to next. The time to next transition is sam-
pled from a probability distribution that depends upon
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Figure 1: Hypercube Multiprocessor System

the failure rates of the components still active. If the fail-
ure rates of all components are constant, the model is a
Markovian model. If the component failure rates are all
functions of mission time (i.e. non-constant), the model
is a non-homogeneous Markov model. If the component
failure rates are individually functions of more than one
time variable (i.e. there is more than one “clock” in the
system upon which component failure rates may depend),
the model is a non-Markovian model. We use all three
types of models in the present study. Once the time to
next transition has been determined, a sampling from a
second distribution is done to determine which of the re-
maining operating components will experience the fail-
ure that is the cause of the transition out of the state.
The determination of the sampling distributions is de-
scribed in [14] and [16]. We note that this formulation
of the simulation process can accommodate the use of
Fault/Error Handling Models (FEHMSs) to implement be-
havioral decomposition for incorporating imperfect fault
coverage as is done in HARP[15]). Although that capa-
bility was available, we did not consider imperfect fault
coverage in the present study. During each trial succes-
sive inter-state transitions are generated until either the
mission time is exceeded or the system fails, causing the
trial to end. The system unreliability is then estimated
from the proportion of trials during which the system
failed before the mission time was reached.

2.3 Importance Sampling
A major characteristic of highly reliable systems is that

system failure events are extremely rare. This means that
a large majority of the trials are likely to end by the mis-
sion time expiring rather than through a system failure.
Since system failures are the events of interest, a very
large total number of trials must be run before a sufficient
pumber of system failures occur to provide a8 meaningful
estimate from the proportion of failure trials to total trials
(i.e. an estimate of the system unreliability). A variance
reduction technique called importance sampling may be
employed to reduce the total number of trials required.
An excellent introduction to importance sampling may
be found in [6]. The basic idea behind importance sam-
pling is to select an alternate distribution from which to
sample which has much higher probability density than
the original distribution in the regions of interest where
the original distribution’s density is very small. Parity to
sampling from the original distribution is maintained by
weighting the observations sampled from the new distri-
bution to reflect the relative difference in density magni-
tude between the two distributions. For example, if the
density of the new distribution is four times greater than
the density of the original distribution in a certain region,
then a failure event observed in that region by sampling
from the new distribution is counted as only 1 of a failure.
The importance sampling techniques implemented in the
simulator we used for this study, called forced transitions
and failure biasing, are described in [14]. Both have the
effect of emphasizing component failure events in order to
increase the number of trial terminations due to system
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use decreasing as well as increasing Weibull failure rates,
and to allow it to accept the input model in the form
of a dynamic fault tree (see below) rather than as a set
of component cut sets. The resulting simulator program
accepts its input model in the same form as the HARP
program, and accepts input files with the same format as
HARP. In addition, it is capable of evaluating all models
that HARP is capable of evaluating, making it completely
compatible with HARP. This is an important advantage
because it allows the reliability analyst to develop his/her
system model once and then input it to whatever evalua-
tion program is most appropriate depending on the char-
acteristics of the model and the programs. It also allows
a comparative evaluation of the performance of the two
programs by applying them both to the same model(s).

3. SYSTEM MODEL

The hypercube multiprocessor system and thé]‘ﬁm_o.x‘igl
of it that we use in this study are described in [3] and

{5] under the name of Architecture 1. We give a brief

description of it here. The architecture is shown in figure
1. It consists of a 3-dimensional hypercube "'éo:‘iﬁgt'xréd"f
as two fault-tolerant 2-dimensional modules, each with-a
spare processing node. The processing nodes themselves
are multiprocessors containing four active processors and,

csp o5 a spare processor. The spare .processor canbe either a
] hot or cold spare. The structiiré-of the processing nodes. ...
(proc ) is also shown in figure 1. Each processing node commuyni- -
cates with other processing nodes in the.system thyeughs.:.
4*proc

four ports. For the system to be operational all eight pro-....
cessing nodes must be operational and must all be.able : .,

Figure 3: Fault tree model of Architecture 1 Processing
to communicate with each other. Therefore, the system. ..

Node with Cold Spares

failure, hence reducing the total number of trials needed
in order to accumulate a sufficient number of system fail-
ure terminations to provide an acceptable estimate of the
system unreliability.

2.4 Simulator Description

The original version of the simulator we used for our
analysis was designed by Lewis[17) and implemented at
Northwestern University. It required a system model to
be described as a set of components arranged in groups.
Each group could optionally have cold spares, and could
have either a constant or a Weibull increasing failure rate.
Each group could also have a Fault/Error Handling Model
(FEHM) associated with it to allow the use of behavioral
decomposition as is done in HARP. System failure cri-
teria were specified in the form of a set of component
cut sets which the analyst had to derive from a combi-
natorial model of the system (for example, a fault tree).
For our study, we modified this simulator to enable it to

will be considered failed if any processing node fails and
a spare processing node is unable to take over or if any
two nodes in the hypercube are unable to communicate
with each other.

Although the form of the analytical model that is ac-
tually evaluated is a Markovian/non-Markovian discrete-
state model, it is specified by the reliability analyst in the
form of a dynamic fault iree(3, 8]. When simulation is not
used for model evaluation, the dynamic fault tree can be
converted into a Markov chain which can then be solved
numerically for state probabilities. When simulation is
used for model evaluation, the discrete-state structure of
the underlying Markovian model is inherent in the sim-
ulation process and the dynamic fault tree is used only
to determine whether a state which has been entered is a
failure state.”

A dynamic fault tree is a generalized fault tree modelin
which the traditional set of combinatorial fault tree gates
is extended to include several non-standard gates that
are designed to express sequence dependent behavior. Se-
quence dependent behavior is behavior that depends in
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Figure 4: Fault tree model of Architecture 1 Processing
Node with Hot Spares '

Component Initial constant failure rate
Shared Memory 3477 x 1077
Intra-node bus 1.147x 10~7
Processor 1.990 x 10-°

Table 1: Initial Constant Hasard Rates (failures/hour)
for Components in Processing Nodes

some way on the order in which events occur. The hyper-
cube system under study exhibits two instances of this
- type of behavior: functional dependencies (the failure of
one component causes one or more other components to
cither fail or become unavailable) and cold spares (a cold
spare cannot fail while it is “cold”™; it can fail only af-
ter it has been activated to substitute for a failed active
component). The functional dependencies appear in the
interconnections between the processing nodes; specifi-
cally, if either the internode link or one of the two ports
on either side of the internode link fails, the remaining
two components (link and/or port(s)) become useless to
the remaining operation of the system and hence may
be considered to be effectively failed themselves. These
functional dependencies are modeled with functional de-
pendency gates, as shown in figure 2. Cold spares are used
within the processing nodes and are modeled using a cold
spare gaie, an example of which appears in figure 3.
Figure 4 models a processing node when the spare pro-
cessor is hot (i.e. active and running from mission start
just like the four initially active processors). The 2-out-
of-4 gate for which the four ports are inputs reflects the
effect of the message routing protocol[5]. Figure 3 models
the processing node when the spare processor is cold. Di-
agrams of fault trees modeling the full architecture were
omitted from this paper due to lack of space. The inter-
ested reader may find them in (3].

4. ANALYSIS RESULTS

We evaluated the system model for the cases where
all components had constant failure rates with hot or

0.800
0.600 4
© all constam

g 0.400 ~ proc wes
5 -+ poc & port wei
+ - 2l wed
@

0.200

—o—
0.000 o Rl ¥ >
[} 2 4 [ ] [ ] 10 12

Mission Time (yesrs)

Figure 5: Effect of Weibull DFRs on System Unreliability
(Hot Spares)

cold spare processors (time homogeneous Markov mod-
els), various components had Weibull DFRs with hot
spare processors (non-homogeneous Markov model), and
various components had Weibull DFRs with cold spare
processors (non-Markovian model). For this paper our
primary purpose is to illustrate the use of simulation to
evaluate the models and contrast it with analytical solu-
tion techniques. Therefore we will use here only selected
results from our analysis to compare the advantages and
disadvantages of simulation vs. analytical solution meth-
ods. A more complete reliability analysis of the hyper-
cube system is found in [2]. Our primary analysis goal
was to determine whether assuming Weibull decreasing
failure rates (DFRs) for components instead of constant
failure rates would result in a sufficient improvement in
predicted system reliability to conclude that the archi-
tecture was adequate to successfully complete a 10 year
mission. Results using constant failure rates[2] indicated
that the proposed architecture would be inadequate, with
the probability of system failure exceeding 60% after 10
years. Initial attempts to evaluate the model with HARP
(which uses analytical solution techniques) were not suc-
cessful due to the large size of the model. The dynamic
fault tree model of the system contains 70 basic events
(110 components total), and 175 fault tree nodes (basic
events + gates). It produces a Markov model with many
thousands of states. Furthermore, when Weibull DFRs
are assumed together with cold spares, the size and com-
plexity of the resulting non-Markovian model is well be-
yond the capability of any analytical solver tool that ex-
ists today, both in terms of memory and execution time
required for its solution. In contrast, our simulator was
able to evaluate the model with none of the problems ex-
perienced by HARP. Components with decreasing failure
rates were assumed to have an initial failure rate A.sp
given in table 1 which declines monotonically over the
mission time according to the Weibull failure rate expres-

218




Mission | All Components Processors Processors All Components
Time Constant FRs | Weibull DFRs and Ports Weibull DFRs

(Years) Weibull DFRs
1 .249 + .016 .0250 & .0031 | .000519 & .00022 | .000255 * .00013
2 271+ .016 .0489 1 .0048 | .00147 £ .00031 | .000361 % .00015
3 .312+.017 -0738 £ .0065 | .00286 X .00044 | .000439 & .00017
4 .361+.018 .0988 £ .0091 | .00481 +.00078 | .000504 + .00019
5 419 +.018 126 & .014 00729 + .0013 | .000550 = .00020
6 475 1 .018 152 4 .017 .0102 + .0018 .000638 + .00031
7 .530 +.018 .176 £ .019 0135 4 .0024 .000673 + .00033
8 576 £ .017 .202 1 .023 L0173 £ .0037 .000718 + .00036
9 .609 + .016 2314 .031 .0208 1 .0045 .000766 £ .00041
10 .631+.013 .257 1+ .036 .0257 & .0091 .000777 £ .00041

Table 2: Effect of Weibull DFRs on System Unreliability (Hot Spares)

sion:

Aweib(t) = A,,,at"" 1

¢))

where « is the Weibull shape parameter[20] which is as-
sumed to have the value @ = 0.5. All components not
having DFRs were assumed to have constant failure rates
givenin table 1. Table 2 and figure § show the effect of as-
suming Weibull DFRs for various subsets of components.
The results reported in table 2 are averaged over 10 runs
of 10000 trials per run. The effect of assuming Weibull
DFRs for increasing numbers of the components clearly
results in decreasing system unreliability. The result of
assuming Weibull DFRs for all components is a difference
of about three orders of magnitude in the system unre-
liability (from 0.631 + 0.013 when all components have
constant FRs down to about 0.777 x 10~ + 0.41 x 10-3
when all components have Weibull DFRs).

The above discussion illustrates the advantage that
simulation can have over analytical techniques: simula-
tion may be able to evaluate models that are beyond the
reach of analytical techniques both in terms of memory
and execution time. Furthermore, if only ballpark evalu-
ations are desired, simulation may be able to produce the
required results relatively quickly. Figure 6 contrasts the
reliability predictions for the hypercube with hot spares
assuming constant failure rates and Weibull DFRs for all
components. The results are averaged over 10 runs, with
each run consisting of only 1000 trials requiring approx-
imately 4 minutes or less of clock time. With only 1000
trials per run, the standard deviations are relatively large.
Nevertheless, the outcome of the comparison is clearly ap-
parent.

However, simulation does have an important disadvan-
tage compared to analytical solution techniques. If the ac-
curacy of the evaluation is important, then the execution
time required by simulation to achieve the required accu-
racy increases rapidly and can quickly become uncompet-
itive with that required by analytical solution techniques

(provided the model is small enough for analytical solu-
tion techniques to be used). Table 3, which shows the
reliability of a single processing node in the hypercube
and the execution time required to obtain it, contrasts
the values obtained using HARP to values obtained us-
ing the simulator with varying numbers of trials per run.
Increases in the accuracy of the reliability estimate, as
measured by the decreasing size of the standard devia-
tion, require very significant increases in the execution
time. The table clearly shows that it is better to use
the analytical solver than the simulator, both in terms
of execution time and accuracy of the reliability predic-
tion. This result holds in general, and experience has
shown that it is usually preferable to use an analytical
solver whenever feasible rather than a simulator to evalu-
ate a reliability model. In particular, whenever accuracy
in results is important we feel that the use of a simula-
tor generally should be a last resort to be pursued after
analytical modeling techniques have been found to be in-
feasible.

5. SUMMARY

We have described a reliability analysis study which
was performed to determine whether assuming of Weibull
decreasing failure rates (DFRs) for components of a fault
tolerant hypercube would significantly improve the 10
year system reliability estimate over that obtained as-
suming constant failure rates. Our results show that a
substantial improvement in system reliability does result
from assuming Weibull DFRs, indicating that a candi-
date architecture that would otherwise be considered in-
adequate instead could provide acceptable reliability after
all. We also contrasted the use of simulation and analyt-
ical solution techniques to evaluate Markovian and non-
Markovian reliability models. Observations made from
our analysis indicate that analytical solution techniques
are preferable whenever the model is small enough and
when accuracy of the answer is important. Conversely,
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Figure 6: Ballpark Evaluation of the Effect of Weibull DFRs on System Unreliability (Hot Spares)

Solver Reliability CPU time
Estimate required
HARP 0.04468 6.4 sec
Simulator, 103 trials/run | .04374 £ .0023 20.2 sec
Simulator, 10* trials/run | .04435 % .00073 4 min 53.8 sec
Simulator, 10° trials/run | .04462%.00023 | 48 min 26.9 sec
Simulator, 10° trials/run | .04463 3+ .000073 | 8 hrs 0 min 2.5 sec

Table 3: Processing Node Model Evaluation Accuracy vs. Execution Time

simulation is preferred whenever approximate ballpark
answers for a large model are sufficient, or when the model
is too large or exhibits system behavior too complex to
be accommodated by analytical solution techniques. Fi-

nally, we have described a simulator tool for evaluating -

Markov and non-Markovian reliability models which is
compatible with the HARP (analytical) reliability evalu-
ation program and is part of the HiRel package of reliabil-
ity evaluation tools. There is a great advantage to having
analytical and simulation tools be compatible with each
other in this way (i.e., both using the same input models
and files, and both providing the same analysis capabil-
ity) because it allows the reliability analyst a great deal
of flexibility in conducting the analysis. Solution meth-
ods may be mixed and matched and applied in the most
appropriate way to a single system model depending on
the type and scope of the desired results.
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