498 research outputs found

    A "fair sampling" perspective on an apparent violation of duality

    Full text link
    In the event in which a quantum mechanical particle can pass from an initial state to a final state along two possible paths, the duality principle states that "the simultaneous observation of wave and particle behavior is prohibited". [M. O. Scully, B.-G. Englert, and H. Walther. Nature, 351:111-116, 1991.] emphasized the importance of additional degrees of freedom in the context of complementarity. In this paper, we show how the consequences of duality change when allowing for biased sampling, that is, postselected measurements on specific degrees of freedom of the environment of the two-path state. Our work contributes to the explanation of previous experimental apparent violations of duality [R. Menzel, D. Puhlmann, A. Heuer, and W. P. Schleich. Proc. Natl. Acad. Sci., 109(24):9314-9319, 2012.] and opens up the way for novel experimental tests of duality.Comment: 10 pages, 8 figure

    Microtubule Modification Influences Cellular Response to amyloid-β Exposure

    Get PDF
    During the normal aging process, cytoskeletal changes such as a reduction in density or disruption of cytoskeletal components occur that can affect neuronal function. As aging is the biggest risk factor for Alzheimer\u27s disease (AD), this study sought to determine how microtubule (MT) modification influences cellular response upon exposure to β-amyloid1-42 (Aβ1-42), which is implicated in AD. The MT networks of hypothalamic GT1-7 neurons were modified by common disrupting or stabilizing drugs, and then the physical and mechanical properties of the modified neurons were determined. The MT modified neurons were then exposed to Aβ1-42 and the ability of the neurons to cope with this exposure was determined by a variety of biochemical assays. Flow cytometry studies indicated that MT disruption reduced the binding of Aβ1-42 to the plasma membrane by 45% per cell compared to neurons with stabilized or unaltered MTs. Although the cells with disrupted MTs experienced less peptide-membrane binding, they experienced similar or increased levels of cytotoxicity caused by the Aβ1-42 exposure. In contrast, MT stabilization delayed toxicity caused by Aβ1-42. These results demonstrate that MT modification significantly influences the ability of neurons to cope with toxicity induced by Aβ1-42

    Direct Measurement of a 27-Dimensional Orbital-Angular-Momentum State Vector

    Get PDF
    The measurement of a quantum state poses a unique challenge for experimentalists. Recently, the technique of "direct measurement" was proposed for characterizing a quantum state in-situ through sequential weak and strong measurements. While this method has been used for measuring polarization states, its real potential lies in the measurement of states with a large dimensionality. Here we show the practical direct measurement of a high-dimensional state vector in the discrete basis of orbital-angular momentum. Through weak measurements of orbital-angular momentum and strong measurements of angular position, we measure the complex probability amplitudes of a pure state with a dimensionality, d=27. Further, we use our method to directly observe the relationship between rotations of a state vector and the relative phase between its orbital-angular-momentum components. Our technique has important applications in high-dimensional classical and quantum information systems, and can be extended to characterize other types of large quantum states.Comment: 8 pages, 3 figure

    Angular two-photon interference and angular two-qubit states

    Get PDF
    Using angular-position-orbital-angular-momentum entangled photons, we study angular two-photon interference in a scheme in which entangled photons are made to pass through apertures in the form of double angular slits, and using this scheme, we demonstrate an entangled two-qubit state that is based on the angular-position correlations of entangled photons. The entanglement of the two-qubit state is quantified in terms of concurrence. These results provide an additional means for preparing entangled quantum states for use in quantum information protocols

    Influence of Atmospheric Turbulence on Optical Communications using Orbital Angular Momentum for Encoding

    Get PDF
    We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology.Comment: 6 pages, 5 figure

    Localized cytokine responses to total knee arthroplasty and total knee revision complications

    Get PDF
    Background The study of localized immune-related factors has proven beneficial for a variety of conditions, and one area of interest in the field of orthopaedics is the impact of implants and localized infections on immune response. Several cytokines have shown increased systemic concentrations (in serum/plasma) in response to implants and infection, but tissue-level cytokines have not been investigated as thoroughly. Methods This exploratory study investigated tissue-level cytokines in a cohort of patients (N = 17) in response to total knee arthroplasty and total knee revision to better understand the immune response to implants and localized infection (e.g., prosthetic joint infection). The overall goal of this study was to provide insight into the localized cytokine response of tissues and identify tissue-level markers specific to inflammation caused by implants vs. inflammation caused by infection. Tissues were collected across several anatomical locations and assayed with a panel of 20 human inflammatory cytokines to understand spatial differences in cytokine levels. Results In this study, six cytokines were elevated in implanted joints, as compared to native joints: IL-10, IL-12p70, IL-13, IL-17A, IL-4, and TNF-α (p \u3c 0.05). Seven cytokines showed infection-dependent increases in localized tissues: IL-1α, IL-1β, IL-6, IL-8, MCP-1, MIP-1α, and MIP-1β (p \u3c 0.05). Conclusions This study demonstrated that differences exist in tissue-level cytokines in response to presence of implant, and some cytokines were specifically elevated for infection; these responses may be informative of overall tissue health. These results highlight the utility of investigating localized cytokine concentrations to offer novel insights for total knee arthroplasty and total knee revision procedures, as well as their complications. Ultimately, this information could provide additional, quantitative measurements of tissue to aid clinical decision making and patient treatment options
    • …
    corecore