79 research outputs found

    Analysing Slavery through Satellite Technology: How Remote Sensing Could Revolutionise Data Collection to Help End Modern Slavery

    Get PDF
    An estimated 40.3 million people are enslaved globally across a range of industries. Whilst these industries are known, their scale can hinder the fight against slavery. Some industries using slave labour are visible in satellite imagery, including mining, brick kilns, fishing and shrimp farming. Satellite data can provide supplementary details for large scales which cannot be easily gathered on the ground. This paper reviews previous uses of remote sensing in the humanitarian and human rights sectors and demonstrates how Earth Observation as a methodology can be applied to help achieve the United Nations Sustainable Development Goal target 8.7

    Understanding the co‐occurrence of tree loss and modern slavery to improve efficacy of conservation actions and policies

    Get PDF
    Locations where populations are most reliant on forests and their ecosystem services for subsistence and development are also areas where modern slavery persists. These issues are noted within the Sustainable Development Goals (SDGs), both target 15.2 and 8.7 respectively. Often activities using slavery perpetuate deforestation, bolstering a slavery‐environment nexus; which has been examined by comparing modern slavery estimates against environmental protection levels. This study assesses the relationship between tree loss and modern slavery focusing on four countries: Brazil, Ghana, Indonesia, and Mozambique. Previously mapped levels of tree loss and predicted future levels of loss have been compared against modern slavery estimates from the Global Slavery Index 2016 and illegal logging analyses to determine an estimate of the risk for slavery related tree loss. These results provide an insight in to the co‐occurrence between modern slavery and tree loss due to a number of activities that are highlighted, including mining, illegal logging, and agricultural practices. The co‐occurrence is both complex, and yet, beyond coincidental. Implications for both national and global policy are noted assessing the benefits that could be achieved by limiting tree loss and ending modern slavery; of benefit to both the conservation and antislavery communities

    Long-term peatland condition assessment via surface motion monitoring using the ISBAS DInSAR technique over the Flow Country, Scotland

    Get PDF
    Satellite Earth Observation (EO) is often used as a cost-effective method to report on the condition of remote and inaccessible peatland areas. Current EO techniques are primarily limited to reporting on the vegetation classes and properties of the immediate peat surface using optical data, which can be used to infer peatland condition. Another useful indicator of peatland condition is that of surface motion, which has the potential to report on mass accumulation and loss of peat. Interferometic SAR (InSAR) techniques can provide this using data from space. However, the most common InSAR techniques for information extraction, such as Persistent Scatterers’ Interferometry (PSI), have seen limited application over peat as they are primarily tuned to work in areas of high coherence (i.e., on hard, non-vegetated surfaces only). A new InSAR technique, called the Intermittent Small BAseline Subset (ISBAS) method, has been recently developed to provide measurements over vegetated areas from SAR data acquired by satellite sensors. This paper examines the feasibility of the ISBAS technique for monitoring long-term surface motion over peatland areas of the Flow Country, in the northeast of Scotland. In particular, the surface motions estimated are compared with ground data over a small forested area (namely the Bad a Cheo forest Reserve). Two sets of satellite SAR data are used: ERS C-band images, covering the period 1992–2000, and Sentinel-1 C-band images, covering the period 2015–2016. We show that the ISBAS measurements are able to identify surface motion over peatland areas, where subsidence is a consequence of known land cover/land use. In particular, the ISBAS products agree with the trend of surface motion, but there are uncertainties with their magnitude and direction (vertical). It is concluded that there is a potential for the ISBAS method to be able to report on trends in subsidence and uplift over peatland areas, and this paper suggests avenues for further investigation, but this requires a well-resourced validation campaign

    Beyond the Walls: Patterns of Child Labour, Forced Labour, and Exploitation in a New Domestic Workers Dataset

    Get PDF
    The new Domestic Workers Dataset is the largest single set of surveys (n = 11,759) of domestic workers to date. Our analysis of this dataset reveals features about the lives and work of this “hard-to-find” population in India—a country estimated to have the largest number of people living in forms of contemporary slavery (11 million). The data allow us to identify child labour, indicators of forced labour, and patterns of exploitation—including labour paid below the minimum wage—using bivariate analysis, factor analysis, and spatial analysis. The dataset also helps to advance our understanding of how to measure labour exploitation and modern slavery by showing the value of “found data” and participatory and citizen science approaches

    Automated classification metrics for energy modelling of residential buildings in the UK with open algorithms

    Get PDF
    Estimating residential building energy use across large spatial extents is vital for identifying and testing effective strategies to reduce carbon emissions and improve urban sustainability. This task is underpinned by the availability of accurate models of building stock from which appropriate parameters may be extracted. For example, the form of a building, such as whether it is detached, semi-detached, terraced etc and its shape may be used as part of a typology for defining its likely energy use. When these details are combined with information on building construction materials or glazing ratio, it can be used to infer the heat transfer characteristics of different properties. However, these data are not readily available for energy modelling or urban simulation. Although this is not a problem when the geographic scope corresponds to a small area and can be hand-collected, such manual approaches cannot be easily applied at the city or national scale. In this paper, we demonstrate an approach that can automatically extract this information at the city scale using off-the-shelf products supplied by a National Mapping Agency. We present two novel techniques to create this knowledge directly from input geometry. The first technique is used to identify built form based upon the physical relationships between buildings. The second technique is used to determine a more refined internal/external wall measurement and ratio. The second technique has greater metric accuracy and can also be used to address problems identified in extracting the built form. A case study is presented for the City of Nottingham in the United Kingdom using two data products provided by the Ordnance Survey of Great Britain (OSGB): MasterMap and AddressBase. This is followed by a discussion of a new categorisation approach for housing form for urban energy assessment

    Mapping annual forest cover by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016

    Get PDF
    Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) HH and HV polarization data were used previously to produce annual, global 25 m forest maps between 2007 and 2010, and the latest global forest maps of 2015 and 2016 were produced by using the ALOS-2 PALSAR-2 data. However, annual 25 m spatial resolution forest maps during 2011–2014 are missing because of the gap in operation between ALOS and ALOS-2, preventing the construction of a continuous, fine resolution time-series dataset on the world's forests. In contrast, the MODerate Resolution Imaging Spectroradiometer (MODIS) NDVI images were available globally since 2000. This research developed a novel method to produce annual 25 m forest maps during 2007–2016 by fusing the fine spatial resolution, but asynchronous PALSAR/PALSAR-2 with coarse spatial resolution, but synchronous MODIS NDVI data, thus, filling the four-year gap in the ALOS and ALOS-2 time-series, as well as enhancing the existing mapping activity. The method was developed concentrating on two key objectives: 1) producing more accurate 25 m forest maps by integrating PALSAR/PALSAR-2 and MODIS NDVI data during 2007–2010 and 2015–2016; 2) reconstructing annual 25 m forest maps from time-series MODIS NDVI images during 2011–2014. Specifically, a decision tree classification was developed for forest mapping based on both the PALSAR/PALSAR-2 and MODIS NDVI data, and a new spatial-temporal super-resolution mapping was proposed to reconstruct the 25 m forest maps from time-series MODIS NDVI images. Three study sites including Paraguay, the USA and Russia were chosen, as they represent the world's three main forest types: tropical forest, temperate broadleaf and mixed forest, and boreal conifer forest, respectively. Compared with traditional methods, the proposed approach produced the most accurate continuous time-series of fine spatial resolution forest maps both visually and quantitatively. For the forest maps during 2007–2010 and 2015–2016, the results had greater overall accuracy values (>98%) than those of the original JAXA forest product. For the reconstructed 25 m forest maps during 2011–2014, the increases in classifications accuracy relative to three benchmark methods were statistically significant, and the overall accuracy values of the three study sites were almost universally >92%. The proposed approach, therefore, has great potential to support the production of annual 25 m forest maps by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016
    • 

    corecore