5,210 research outputs found
A Variational Monte Carlo Study of the Current Carried by a Quasiparticle
With the use of Gutzwiller-projected variational states, we study the
renormalization of the current carried by the quasiparticles in
high-temperature superconductors and of the quasiparticle spectral weight. The
renormalization coefficients are computed by the variational Monte Carlo
technique, under the assumption that quasiparticle excitations may be described
by Gutzwiller-projected BCS quasiparticles. We find that the current
renormalization coefficient decreases with decreasing doping and tends to zero
at zero doping. The quasiparticle spectral weight Z_+ for adding an electron
shows an interesting structure in k space, which corresponds to a depression of
the occupation number k just outside the Fermi surface. The perturbative
corrections to those quantities in the Hubbard model are also discussed.Comment: 9 pages, 9 figure
Synchronization in small-world systems
We quantify the dynamical implications of the small-world phenomenon. We
consider the generic synchronization of oscillator networks of arbitrary
topology, and link the linear stability of the synchronous state to an
algebraic condition of the Laplacian of the graph. We show numerically that the
addition of random shortcuts produces improved network synchronizability.
Further, we use a perturbation analysis to place the synchronization threshold
in relation to the boundaries of the small-world region. Our results also show
that small-worlds synchronize as efficiently as random graphs and hypercubes,
and more so than standard constructive graphs
New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons
We report on the first results of a sensitive search for scalar coupling of
photons to a light neutral boson in the mass range of approximately 1.0
milli-electron volts and coupling strength greater than 10 GeV using
optical photons. This was a photon regeneration experiment using the "light
shining through a wall" technique in which laser light was passed through a
strong magnetic field upstream of an optical beam dump; regenerated laser light
was then searched for downstream of a second magnetic field region optically
shielded from the former. Our results show no evidence for scalar coupling in
this region of parameter space.Comment: pdf-file, 10 pages, 4 figures, submitted to Physical Review Letter
Contrasting mechanisms for crustal sulphur contamination of mafic magma: evidence from dyke and sill complexes from the British Palaeogene Igneous Province
This is the final version of the article. Available from the Geological Society via the DOI in this record.he addition of crustal sulphur to magma can trigger sulphide saturation, a process fundamental to the development of some Ni–Cu–PGE deposits. In the British Palaeogene Igneous Province, mafic and ultramafic magmas intrude a thick sedimentary sequence offering opportunities to elucidate mechanisms of magma–crust interaction in a setting with heterogeneous S isotope signatures. We present S-isotopic data from sills and dykes on the Isle of Skye. Sharp contrasts exist between variably light δ34S in Jurassic sedimentary sulphide (−35‰ to −10‰) and a local pristine magmatic δ34S signature of −2.3 ± 1.5‰. Flat-lying sills have restricted δ34S (−5‰ to 0‰) whereas steeply dipping dykes are more variable (−0‰ to −2‰). We suggest that the mechanism by which magma is intruded exerts a fundamental control on the degree of crustal contamination by volatile elements. Turbulent flow within narrow, steep magma conduits, discordant to sediments, and developed by brittle extension or dilation have maximum contamination potential. In contrast, sill-like conduits emplaced concordantly to sediments show little contamination by crustal S. The province is prospective for Ni–Cu–PGE mineralization analogous to the sill-hosted Noril’sk deposit, and Cu/Pd ratios of sills and dykes on Skye indicate that magmas had already reached S-saturation before reaching the present exposure level.Sulphur isotope analysis was undertaken at the Scottish Universities
Environment Research Centre (SUERC) and funded by an NERC Isotope
Geosciences Facilities Steering Committee grant (IP-1356-1112). H.S.R.H.
would like to acknowledge the financial support of the Natural Environment
Research Council (NERC) for funding this work (studentship NE/J50029X/1)
and open access publication. A.J.B. is funded by NERC funding of the Isotope
Community Support Facility at SUER
Status of the profession
The number of astronomers has grown by about 40 percent over the past decade. The number of astronomers with jobs in industry, or with long-term, non-tenured, jobs has increased dramatically compared with traditional faculty positions. The increase in the number of astronomers and the declining share of the NSF budget going to astronomy has led to extreme difficulties in the NSF grant program and in support of the National Observatories. In 1989, direct NASA support of astronomers through the grants program exceeds that of NSF, although the total of the NSF grants program over decade far exceeds that of NASA. Access to major new telescopes will be important issue for the 1990s. US astronomers, who once had a monopoly on telescopes larger than 3 meters, will, by the year 2000, have access to just half of the world's optical telescope area
Humans Strengthen Bottom-Up Effects and Weaken Trophic Cascades in a Terrestrial Food Web
Ongoing debate about whether food webs are primarily regulated by predators or by primary plant productivity, cast as top-down and bottom-up effects, respectively, may becoming superfluous. Given that most of the world\u27s ecosystems are human dominated we broadened this dichotomy by considering human effects in a terrestrial food-web. We studied a multiple human-use landscape in southwest Alberta, Canada, as opposed to protected areas where previous terrestrial food-web studies have been conducted. We used structural equation models (SEMs) to assess the strength and direction of relationships between the density and distribution of: (1) humans, measured using a density index; (2) wolves (Canis lupus), elk (Cervus elpahus) and domestic cattle (Bos taurus), measured using resource selection functions, and; (3) forage quality, quantity and utilization (measured at vegetation sampling plots). Relationships were evaluated by taking advantage of temporal and spatial variation in human density, including day versus night, and two landscapes with the highest and lowest human density in the study area. Here we show that forage-mediated effects of humans had primacy over predator-mediated effects in the food web. In our parsimonious SEM, occurrence of humans was most correlated with occurrence of forage (beta = 0.637, p \u3c 0.0001). Elk and cattle distribution were correlated with forage (elk day: beta = 0.400, p \u3c 0.0001; elk night: beta = 0.369, p \u3c 0.0001; cattle day: beta = 0.403, p \u3c 0.0001; cattle, night: beta = 0.436, p \u3c 0.0001), and the distribution of elk or cattle and wolves were positively correlated during daytime (elk: beta = 0.293, p \u3c 0.0001, cattle: beta = 0.303, p \u3c 0.0001) and night-time (elk: beta = 0.460, p \u3c 0.0001, cattle: beta = 0.482, p \u3c 0.0001). Our results contrast with research conducted in protected areas that suggested human effects in the food web are primarily predator-mediated. Instead, human influence on vegetation may strengthen bottom-up predominance and weaken top-down trophic cascades in ecosystems. We suggest that human influences on ecosystems may usurp top-down and bottom-up effects
Revealing power dynamics and staging conflicts in agricultural system transitions : Case studies of innovation platforms in New Zealand
Innovation platforms (IPs) that support agricultural innovation to enable transition processes towards more sustainable agriculture provide a space where conflicts of interest among actors in the existing agricultural system (the so called incumbent regime) may play out. Sometimes these conflicts over how actors will benefit from an action are not revealed until actors are brought together. However, a barrier to change occurs when IP actors use their existing power to mobilise resources to influence if and how individual and collective interests are aligned. In the context of agricultural innovation and transitions, this paper uses the power in transitions framework (Avelino and Wittmayer, 2016), along with analytical perspectives on conflicts and role perceptions, to understand how consciously staging or revealing conflicts of interest among IP actors changed role perceptions and power relations among these actors. The paper explores this topic in two IPs addressing agricultural production and sustainability challenges in New Zealand's agricultural sector. Conflicts were staged in IPs when one group of actors mobilised resources that enabled them to move existing power relations from one-sided, to synergistic or a mutual dependency. This enabled conflicts to be acknowledged and solved. In contrast, conflicts were not staged when actors mobilised resources to maintain antagonostic power relations. Our cases demontrate that staging conflicts to change actors' role perceptions is an important intermediary step to forming new power relations in the agricultural system. Our findings highlight the need for IP theory to conceptualise power relations in IPs as context specific, dynamic and a force shaping outcomes, rather than solely a force exerted by actors in the incumbent regime over IP actors.</p
- …