4,985 research outputs found

    A Variational Monte Carlo Study of the Current Carried by a Quasiparticle

    Full text link
    With the use of Gutzwiller-projected variational states, we study the renormalization of the current carried by the quasiparticles in high-temperature superconductors and of the quasiparticle spectral weight. The renormalization coefficients are computed by the variational Monte Carlo technique, under the assumption that quasiparticle excitations may be described by Gutzwiller-projected BCS quasiparticles. We find that the current renormalization coefficient decreases with decreasing doping and tends to zero at zero doping. The quasiparticle spectral weight Z_+ for adding an electron shows an interesting structure in k space, which corresponds to a depression of the occupation number k just outside the Fermi surface. The perturbative corrections to those quantities in the Hubbard model are also discussed.Comment: 9 pages, 9 figure

    Articulatory Tradeoffs Reduce Acoustic Variability During American English /r/ Production

    Full text link
    Acoustic and articulatory recordings reveal that speakers utilize systematic articulatory tradeoffs to maintain acoustic stability when producing the phoneme /r/. Distinct articulator configurations used to produce /r/ in various phonetic contexts show systematic tradeoffs between the cross-sectional areas of different vocal tract sections. Analysis of acoustic and articulatory variabilities reveals that these tradeoffs act to reduce acoustic variability, thus allowing large contextual variations in vocal tract shape; these contextual variations in turn apparently reduce the amount of articulatory movement required. These findings contrast with the widely held view that speaking involves a canonical vocal tract shape target for each phoneme.National Institute on Deafness and Other Communication Disorders (1R29-DC02852-02, 5R01-DC01925-04, 1R03-C2576-0l); National Science Foundation (IRI-9310518

    Incorporating Inductances in Tissue-Scale Models of Cardiac Electrophysiology

    Get PDF
    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and [...].Comment: 20 pages, 12 figure

    The geometry of thermodynamic control

    Full text link
    A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold, and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory

    Probabilistic lifetime strength of aerospace materials via computational simulation

    Get PDF
    The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data

    Transmission of High-Power Electron Beams Through Small Apertures

    Full text link
    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 hour continuous run.Comment: arXiv admin note: text overlap with arXiv:1305.019

    Low Temperature Anomaly in Mesoscopic Kondo Wires

    Get PDF
    We report the observation of an anomalous magnetoresistance in extremely dilute quasi-one-dimensional AuFe wires at low temperatures, along with a hysteretic background at low fields. The Kondo resistivity does not show the unitarity limit down to the lowest temperature, implying uncompensated spin states. We suggest that the anomalous magnetoresistance may be understood as the interference correction from the accumulation of geometric phase in the conduction electron wave function around the localized impurity spin.Comment: Four pages, five figure

    Duct Excision is Still Necessary to Rule out Breast Cancer in Patients Presenting with Spontaneous Bloodstained Nipple Discharge

    Get PDF
    Introduction. Spontaneous nipple discharge is the third most common reason for presentation to a symptomatic breast clinic. Benign and malignant causes of spontaneous nipple discharge continue to be difficult to distinguish. We analyse our experience of duct excisions for spontaneous nipple discharge to try to identify features that raise suspicion of breast cancer and to identify features indicative of benign disease that would be suitable for nonoperative management. Methods. Details of one hundred and ninety-four patients who underwent duct excision for spontaneous nipple discharge between 1995 and 2005 were analysed. Results. Malignant disease was identified in 11 (5.7%) patients, 4 invasive and 7 insitu, which was 10.2% of those presenting with bloodstained discharge. All patients with malignant disease had bloodstained discharge. Discharge due to malignant disease was more likely to be bloodstained than that due to benign causes (Fisher's exact test, 2-tailed P value = 0.00134). Conclusion. Our findings do not support a policy of conservative management of spontaneous bloodstained nipple discharge. Cases of demonstrable spontaneous bloodstained nipple discharge should undergo duct excision to prevent malignant lesions being missed
    corecore