35 research outputs found

    Listeria monocytogenes as a probe of immune function

    No full text

    Resistance of Haemophilus influenzae to Reactive Nitrogen Donors and Gamma Interferon-Stimulated Macrophages Requires the Formate-Dependent Nitrite Reductase Regulator-Activated ytfE Gene▿

    No full text
    Haemophilus influenzae efficiently colonizes and persists at the human nasopharyngeal mucosa, causing disease when it spreads to other sites. Nitric oxide (NO) represents a major antimicrobial defense deployed by host cells in locations colonized by H. influenzae during pathogenesis that are likely to vary in oxygen levels. Formate-dependent nitrite reductase regulator (FNR) is an oxygen-sensitive regulator in several bacterial pathogens. We report that fnr of H. influenzae is required for anaerobic defense against exposure to NO donors and to resist NO-dependent effects of gamma interferon (IFN-Îł)-activated murine bone marrow-derived macrophages. To understand the mechanism of resistance, we investigated the role of FNR-regulated genes in defense against NO sources. Expression analysis revealed FNR-dependent activation of nrfA, dmsA, napA, and ytfE. Nonpolar deletion mutants of nrfA and ytfE exhibited sensitivity to NO donors, and the ytfE gene was more critical for survival. Compared to the wild-type strain, the ytfE mutant exhibited decreased survival when exposed to macrophages, a defect that was more pronounced after prior stimulation of macrophages with IFN-Îł or lipopolysaccharide. Complementation restored survival of the mutant to the level in the parental strain. Increased sensitivity of the ytfE mutant relative to that of the parent was abrogated by treatment of macrophages with a NO synthase inhibitor, implicating YtfE in resistance to a NO-dependent pathway. These results identify a requirement for FNR in positive control of ytfE and indicate a critical role for ytfE in resistance of H. influenzae to reactive nitrogen species and the antibacterial effects of macrophages

    Fecal transplantation does not transfer either susceptibility or resistance to food borne listeriosis in C57BL/6 and BALB/c/By mice

    No full text
    The composition of the intestinal microbiota has wide reaching effects on the health of an individual, including the development of protective innate immune responses.  In this report, a fecal transplantation approach was used to determine whether resistance to food borne listeriosis was dependent on the murine gut microbiota.  Transplantation of BALB/c/By feces did not increase the susceptibility of C57BL/6 mice to Listeria monocytogenes infection.   Likewise, transplantation of C57BL/6 fecal matter did not enhance the resistance of BALB/c/By mice.  Thus, intestinal microbiota composition is not a key factor that confers either susceptibility or resistance to food borne listeriosis in mice

    Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect

    No full text
    Zmpste24 is an integral membrane metalloproteinase of the endoplasmic reticulum. Biochemical studies of tissues from Zmpste24-deficient mice (Zmpste24(−/−)) have indicated a role for Zmpste24 in the processing of CAAX-type prenylated proteins. Here, we report the pathologic consequences of Zmpste24 deficiency in mice. Zmpste24(−/−) mice gain weight slowly, appear malnourished, and exhibit progressive hair loss. The most striking pathologic phenotype is multiple spontaneous bone fractures—akin to those occurring in mouse models of osteogenesis imperfecta. Cortical and trabecular bone volumes are significantly reduced in Zmpste24(−/−) mice. Zmpste24(−/−) mice also manifested muscle weakness in the lower and upper extremities, resembling mice lacking the farnesylated CAAX protein prelamin A. Prelamin A processing was defective both in fibroblasts lacking Zmpste24 and in fibroblasts lacking the CAAX carboxyl methyltransferase Icmt but was normal in fibroblasts lacking the CAAX endoprotease Rce1. Muscle weakness in Zmpste24(−/−) mice can be reasonably ascribed to defective processing of prelamin A, but the brittle bone phenotype suggests a broader role for Zmpste24 in mammalian biology

    Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis

    No full text
    Candida albicans is a ubiquitous opportunistic pathogen that is the most prevalent cause of hospital-acquired fungal infections. In mammalian hosts, C. albicans is engulfed by phagocytes that attack the pathogen with DNA-damaging reactive oxygen species (ROS). Acetylation of histone H3 lysine 56 (H3K56) by the fungal-specific histone acetyltransferase Rtt109 is important for yeast model organisms to survive DNA damage and maintain genome integrity. To assess the importance of Rtt109 for C. albicans pathogenicity, we deleted the predicted homolog of Rtt109 in the clinical C. albicans isolate, SC5314. C. albicans rtt109−/− mutant cells lack acetylated H3K56 (H3K56ac) and are hypersensitive to genotoxic agents. Additionally, rtt109−/− mutant cells constitutively display increased H2A S129 phosphorylation and elevated DNA repair gene expression, consistent with endogenous DNA damage. Importantly, C. albicans rtt109−/− cells are significantly less pathogenic in mice and more susceptible to killing by macrophages in vitro than are wild-type cells. Via pharmacological inhibition of the host NADPH oxidase enzyme, we show that the increased sensitivity of rtt109−/− cells to macrophages depends on the host’s ability to generate ROS, providing a mechanistic link between the drug sensitivity, gene expression, and pathogenesis phenotypes. We conclude that Rtt109 is particularly important for fungal pathogenicity, suggesting a unique target for therapeutic antifungal compounds

    Dominant Role of the sst1 Locus in Pathogenesis of Necrotizing Lung Granulomas during Chronic Tuberculosis Infection and Reactivation in Genetically Resistant Hosts

    No full text
    Significant host heterogeneity in susceptibility to tuberculosis exists both between and within mammalian species. Using a mouse model of infection with virulent Mycobacterium tuberculosis (Mtb), we identified the genetic locus sst1 that controls the progression of pulmonary tuberculosis in immunocompetent hosts. In this study, we demonstrate that within the complex, multigenic architecture of tuberculosis susceptibility, sst1 functions to control necrosis within tuberculosis lesions in the lungs; this lung-specific sst1 effect is independent of both the route of infection and genetic background of the host. Moreover, sst1-dependent necrosis was observed at low bacterial loads in the lungs during reactivation of the disease after termination of anti-tuberculosis drug therapy. We demonstrate that in sst1-susceptible hosts, nonlinked host resistance loci control both lung inflammation and production of inflammatory mediators by Mtb-infected macrophages. Although interactions of the sst1-susceptible allele with genetic modifiers determine the type of the pulmonary disease progression, other resistance loci do not abolish lung necrosis, which is, therefore, the core sst1-dependent phenotype. Sst1-susceptible mice from tuberculosis-resistant and -susceptible genetic backgrounds reproduce a clinical spectrum of pulmonary tuberculosis and may be used to more accurately predict the efficacy of anti-tuberculosis interventions in genetically heterogeneous human populations

    Allelic penetrance approach as a tool to model two-locus interaction in complex binary traits.

    Get PDF
    Many binary phenotypes do not follow a classical Mendelian inheritance pattern. Interaction between genetic and environmental factors is thought to contribute to the incomplete penetrance phenomena often observed in these complex binary traits. Several two-locus models for penetrance have been proposed to aid the genetic dissection of binary traits. Such models assume linear genetic effects of both loci in different mathematical scales of penetrance, resembling the analytical framework of quantitative traits. However, changes in phenotypic scale are difficult to envisage in binary traits and limited genetic interpretation is extractable from current modeling of penetrance. To overcome this limitation, we derived an allelic penetrance approach that attributes incomplete penetrance to the stochastic expression of the alleles controlling the phenotype, the genetic background and environmental factors. We applied this approach to formulate dominance and recessiveness in a single diallelic locus and to model different genetic mechanisms for the joint action of two diallelic loci. We fit the models to data on the genetic susceptibility of mice following infections with Listeria monocytogenes and Plasmodium berghei. These models gain in genetic interpretation, because they specify the alleles that are responsible for the genetic (inter)action and their genetic nature (dominant or recessive), and predict genotypic combinations determining the phenotype. Further, we show via computer simulations that the proposed models produce penetrance patterns not captured by traditional two-locus models. This approach provides a new analysis framework for dissecting mechanisms of interlocus joint action in binary traits using genetic crosses
    corecore