286 research outputs found

    Deep Clustering for Domain Adaptation

    Get PDF

    Deep Clustering with Concrete <i>K</i>-Means

    Get PDF

    Data Driven Chiller Plant Energy Optimization with Domain Knowledge

    Full text link
    Refrigeration and chiller optimization is an important and well studied topic in mechanical engineering, mostly taking advantage of physical models, designed on top of over-simplified assumptions, over the equipments. Conventional optimization techniques using physical models make decisions of online parameter tuning, based on very limited information of hardware specifications and external conditions, e.g., outdoor weather. In recent years, new generation of sensors is becoming essential part of new chiller plants, for the first time allowing the system administrators to continuously monitor the running status of all equipments in a timely and accurate way. The explosive growth of data flowing to databases, driven by the increasing analytical power by machine learning and data mining, unveils new possibilities of data-driven approaches for real-time chiller plant optimization. This paper presents our research and industrial experience on the adoption of data models and optimizations on chiller plant and discusses the lessons learnt from our practice on real world plants. Instead of employing complex machine learning models, we emphasize the incorporation of appropriate domain knowledge into data analysis tools, which turns out to be the key performance improver over state-of-the-art deep learning techniques by a significant margin. Our empirical evaluation on a real world chiller plant achieves savings by more than 7% on daily power consumption.Comment: CIKM2017. Proceedings of the 26th ACM International Conference on Information and Knowledge Management. 201

    LiveVV: Human-Centered Live Volumetric Video Streaming System

    Full text link
    Volumetric video has emerged as a prominent medium within the realm of eXtended Reality (XR) with the advancements in computer graphics and depth capture hardware. Users can fully immersive themselves in volumetric video with the ability to switch their viewport in six degree-of-freedom (DOF), including three rotational dimensions (yaw, pitch, roll) and three translational dimensions (X, Y, Z). Different from traditional 2D videos that are composed of pixel matrices, volumetric videos employ point clouds, meshes, or voxels to represent a volumetric scene, resulting in significantly larger data sizes. While previous works have successfully achieved volumetric video streaming in video-on-demand scenarios, the live streaming of volumetric video remains an unresolved challenge due to the limited network bandwidth and stringent latency constraints. In this paper, we for the first time propose a holistic live volumetric video streaming system, LiveVV, which achieves multi-view capture, scene segmentation \& reuse, adaptive transmission, and rendering. LiveVV contains multiple lightweight volumetric video capture modules that are capable of being deployed without prior preparation. To reduce bandwidth consumption, LiveVV processes static and dynamic volumetric content separately by reusing static data with low disparity and decimating data with low visual saliency. Besides, to deal with network fluctuation, LiveVV integrates a volumetric video adaptive bitrate streaming algorithm (VABR) to enable fluent playback with the maximum quality of experience. Extensive real-world experiment shows that LiveVV can achieve live volumetric video streaming at a frame rate of 24 fps with a latency of less than 350ms

    Inhibition of HDAC activity directly reprograms murine embryonic stem cells to trophoblast stem cells

    Get PDF
    Embryonic stem cells (ESCs) can differentiate into all cell types of the embryonic germ layers. ESCs can also generate totipotent 2C-like cells and trophectodermal cells. However, these latter transitions occur at low frequency due to epigenetic barriers, the nature of which is not fully understood. Here, we show that treating mouse ESCs with sodium butyrate (NaB) increases the population of 2C-like cells and enables direct reprogramming of ESCs into trophoblast stem cells (TSCs) without a transition through a 2C-like state. Mechanistically, NaB inhibits histone deacetylase activities in the LSD1-HDAC1/2 corepressor complex. This increases acetylation levels in the regulatory regions of both 2C- and TSC-specific genes, promoting their expression. In addition, NaB-treated cells acquire the capacity to generate blastocyst-like structures that can develop beyond the implantation stage in vitro and form deciduae in vivo. These results identify how epigenetics restrict the totipotent and trophectoderm fate in mouse ESCs.</p

    Effect of Grain Coalescence on Dislocation and Stress Evolution of GaN Films Grown on Nanoscale Patterned Sapphire Substrates

    Full text link
    Two types of nucleation layers (NLs), including in-situ low-temperature grown GaN (LT-GaN) and ex-situ sputtered physical vapor deposition AlN (PVD-AlN), are applied on cone-shaped nanoscale patterned sapphire substrate (NPSS). The initial growth process of GaN on these two NLs is comparably investigated by a series of growth interruptions. The coalescence process of GaN grains is modulated by adjusting the three-dimensional (3D) temperatures. The results indicate that higher 3D temperatures reduce the edge dislocation density while increasing the residual compressive stress in GaN films. Compared to the LT-GaN NLs, the PVD-AlN NLs effectively resist Ostwald ripening and facilitate the uniform growth of GaN grains on NPSS. Furthermore, GaN films grown on NPSS with PVD-AlN NLs exhibit a reduction of over 50% in both screw and edge dislocation densities compared to those grown on LT-GaN NLs. Additionally, PVD-AlN NLs result in an increase of about 0.5 GPa in the residual compressive stress observed in GaN films

    Silicon Nanophotonic Waveguides for the Mid-Infrared

    Full text link
    It has recently been shown that silicon nanophotonic waveguides can be used to construct all of the components of a photonic data transmission system on a single chip. These components can be integrated together with CMOS electronics to create complex electronic-photonic integrated circuits. It has also emerged that the high field confinement of silicon nanoscale guides enables exciting new applications, from chipscale nonlinear optics to biosensors and light-force activated devices. To date, most of the experiments in silicon waveguides have been at wavelengths in the near-infrared, ranging from 1.1-2 microns. Here we show that single-mode silicon nano-waveguides can be used at mid-infrared wavelengths, in particular at 4.5 microns, or 2222.2 1/cm. This idea has appeared in theoretical literature, but experimental realization has been elusive. This result represents the first practical integrated waveguide system for the mid-infrared in silicon, and enables a range of new applications.Comment: 18 pages, 4 figure

    SPI1-induced downregulation of FTO promotes GBM progression by regulating pri-miR-10a processing in an m6A-dependent manner

    Get PDF
    As one of the most common post-transcriptional modifications of mRNAs and noncoding RNAs, N6-methyladenosine (m6A) modification regulates almost every aspect of RNA metabolism. Evidence indicates that dysregulation of m6A modification and associated proteins contributes to glioblastoma (GBM) progression. However, the function of fat mass and obesity-associated protein (FTO), an m6A demethylase, has not been systematically and comprehensively explored in GBM. Here, we found that decreased FTO expression in clinical specimens correlated with higher glioma grades and poorer clinical outcomes. Functionally, FTO inhibited growth and invasion in GBM cells in vitro and in vivo. Mechanistically, FTO regulated the m6A modification of primary microRNA-10a (pri-miR-10a), which could be recognized by reader HNRNPA2B1, recruiting the microRNA microprocessor complex protein DGCR8 and mediating pri-miR-10a processing. Furthermore, the transcriptional activity of FTO was inhibited by the transcription factor SPI1, which could be specifically disrupted by the SPI1 inhibitor DB2313. Treatment with this inhibitor restored endogenous FTO expression and decreased GBM tumor burden, suggesting that FTO may serve as a novel prognostic indicator and therapeutic molecular target of GBM.publishedVersio

    The dual role of glioma exosomal microRNAs: glioma eliminates tumor suppressor miR-1298-5p via exosomes to promote immunosuppressive effects of MDSCs

    Get PDF
    Clear evidence shows that tumors could secrete microRNAs (miRNAs) via exosomes to modulate the tumor microenvironment (TME). However, the mechanisms sorting specific miRNAs into exosomes are still unclear. In order to study the biological function and characterization of exosomal miRNAs, we performed whole-transcriptome sequencing in 59 patients’ whole-course cerebrospinal fluid (CSF) small extracellular vesicles (sEV) and matched glioma tissue samples. The results demonstrate that miRNAs could be divided into exosome-enriched miRNAs (ExomiRNAs) and intracellular-retained miRNAs (CLmiRNAs), and exosome-enriched miRNAs generally play a dual role. Among them, miR-1298-5p was enriched in CSF exosomes and suppressed glioma progression in vitro and vivo experiments. Interestingly, exosomal miR-1298-5p could promote the immunosuppressive effects of myeloid-derived suppressor cells (MDSCs) to facilitate glioma. Therefore, we found miR-1298-5p had different effects on glioma cells and MDSCs. Mechanically, downstream signaling pathway analyses showed that miR-1298-5p plays distinct roles in glioma cells and MDSCs via targeting SETD7 and MSH2, respectively. Moreover, reverse verification was performed on the intracellular-retained miRNA miR-9-5p. Thus, we confirmed that tumor-suppressive miRNAs in glioma cells could be eliminated through exosomes and target tumor-associated immune cells to induce tumor-promoting phenotypes. Glioma could get double benefit from it. These findings uncover the mechanisms that glioma selectively sorts miRNAs into exosomes and modulates tumor immunity.publishedVersio
    • …
    corecore