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DEEP CLUSTERING FOR DOMAIN ADAPTATION

Boyan Gao1, Yongxin Yang1, Henry Gouk1, Timothy M. Hospedales1,2

1School of Informatics, University of Edinburgh, United Kingdom
2Samsung AI Centre, Cambridge, United Kingdom

ABSTRACT

We address the heterogeneous domain adaptation task: adapt-
ing a classifier trained on data from one domain to operate
on another domain that also has a different label space. We
consider two settings that both exhibit label scarcity of some
form—one where only unlabelled data is available, and an-
other where a small volume of labelled data is available in
addition to the unlabelled data. Our method is based on two
specialisations of a recently proposed approach for deep clus-
tering. It is shown that our approach noticeably outperforms
other methods based on deep clustering in both the fully un-
supervised and the semi-supervised settings.

Index Terms— Domain Adaptation, Deep Clustering,
Unsupervised Learning, Semi-Supervised Learning

1. INTRODUCTION

Domain adaptation aims to alleviate the need for labelled
examples in a given target domain using knowledge trans-
ferred from a related source domain, such as across image
data of different camera types [1]. Domain adaptation (DA)
is a very well studied topic with numerous competing meth-
ods [1]. Clustering-based DA approaches group unlabelled
target domain data examples that are likely to belong to
the same class. One area of DA where clustering meth-
ods are particularly useful is that of heterogeneous domain
adaptation—where the target domain contains novel classes
compared to the source domain. For DA problems of this
type, clustering-based DA methods [2, 3] provide one of the
only solutions.

These existing clustering-based approaches to heteroge-
neous domain adaptation suffer from a significant conceptual
deficiency. Several of these techniques rely on a soft approx-
imation to the k-means objective function. This type of clus-
tering objective is known to lead to poorer separation between
clusters in the shallow setting [4], and is likely to impose a
suboptimal inductive bias on the deep network being trained
to find a good representation for classification. In this pa-
per, we demonstrate the application of our recently proposed
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Concrete k-Means (CKM) deep clustering framework [5] to
heterogeneous domain adaptation, where it achieves excellent
results in both the completely unsupervised and sparsely su-
pervised target domain conditions.

2. BACKGROUND & RELATED WORK

The CKM method for deep clustering consists of two steps:
(i) An autoencoder parameterised by ~φ and ~ϕ for the encoder
and decoder, respectively, is trained using the standard recon-
struction error loss on the unlabelled data, X = {~xi}Ni=1,

LAE(X, ~φ, ~ϕ) =
N∑
i=1

‖~xi − g~ϕ(f~φ(~xi))‖
2
2. (1)

(ii) The autoencoder is fine-tuned with the concrete k-means
loss function applied to the hidden representation,

LCKM (X,M, ~φ) =

N∑
i=1

||f~φ(~xi)− ~hiM ||
2
2, , (2)

where M is a matrix of k centroids (each individually rep-
resented as ~µi), and ~hi is a one-hot vector sampled from a
Gumbel-Softmax distribution [6, 7] parameterised by the dis-
tance of f(~xi) to each of the centroids in M .

Several other approaches to deep clustering follow the
same high level approach—leveraging a clustering-based ob-
jective to impose additional inductive bias on the represen-
tation learned by an autoencoder. Xie et al. [8] show how
to jointly optimise an autoencoder and a k-means model to
get a “k-means friendly” latent space. The hard assignment
in the k-means objective prevent them from optimising the
true loss function, so their DEC method makes use of an ap-
proximation based on soft assignment of instances to clus-
ters. However, this surrogate objective means that the solu-
tion to their model is not necessarily a minimum of the k-
means objective. In contrast, DCN [9] resolves the issue by
alternating optimisation. Each minibatch of training data is
first used to update the deep representation while keeping the
centroids held constant, and then used to update the centroids
while holding the representation constant. However, alternat-
ing optimisation may be slow and ineffective compared to an
end-to-end solution. More importantly it hampers integration



of clustering as a module in a larger end-to-end deep learn-
ing system. In contrast to these methods, we show how one
can jointly train a deep representation and cluster centroids
with the standard k-means objective using backpropagation
and conventional deep learning optimisers.

Domain adaptation is the process of learning a model
on some source distribution in such a way that it will still
perform well when applied to a different, but related, target
distribution [1]. In the case of unsupervised domain adap-
tation (UDA), one has labelled data from the source domain
and unlabelled data from the target domain, while super-
vised domain adaptation (SDA) assumes sparse labelled data
and plentiful unlabelled data in the target domain. Only
a few recent papers addressed the unsupervised [3, 2] and
(semi)-supervised [10] heterogeneous DA problem. Conven-
tional deep UDA methods like domain adversarial neural net-
works [11] are unsuited to this setting since naively making
datasets indistinguishable is counterproductive if their cate-
gories are disjoint. An intuitive strategy for heterogeneous
UDA is based on deep clustering. Specifically, learning the
representation jointly across source and target domains pro-
vides knowledge transfer; while modelling separate source
and target cluster centres supports disjoint categories. We
show that the excellent deep clustering provided by our CKM
method can underpin an effective heterogeneous DA algo-
rithm that outperforms the few existing methods for this task.

Most domain adaptation studies assume shared label-
space between source and target domain, or homogeneous
domain adaptation. However, a particularly challenging vari-
ant of this problem is the setting where the source and target
domains have differing or disjoint label-spaces, i.e., hetero-
geneous domain adaptation. It is the heterogeneous variant of
the problem that we consider in this paper.

3. HETEROGENEOUS DOMAIN ADAPTATION

This section describes how the CKM framework [5] can be
modified to perform heterogeneous domain adaptation. Two
problem variants are considered: unsupervised domain adap-
tation, where one only has unlabelled data from the target do-
main; and semi-supervised domain adaptation, where one has
access to the unlabelled data and a small set of labelled data.

3.1. Unsupervised Adaptation

In unsupervised domain adaptation, we assume a labelled
source domain and unlabelled target domain. We denote by
Xs = {~xsi}ni=1 and Ys = {~ysi }ni=1, ~ys ∈ Ys the features and
labels from the source domain training set. For the target do-
main training, we have only features, Xtr

t = {~xti}mi=1. After
training, the resulting model is evaluated on a set of target
domain data with labels, Xte

t = {~xti}
q
i=1 and Y tet = {~yti}

q
i=1,

~yt ∈ Yt. The particularly challenging aspect of the heteroge-
neous UDA task is that the source and target labels spaces are

Algorithm 1: Concrete k-means for Heterogeneous
Unsupervised Domain Adaptation

Input: Xs, Ys, Xt, α, η, λ

Onput: f~φ, g~ϕ, q~θ,M

Init: ~φ, ~ϕ,
while not converged do

(~φ, ~ϕ)← (~φ, ~ϕ)− α∇(~φ,~ϕ)L
AE({Xs, Xt});

end
Init: ~θ,M with k-means ++

while not converged do
~φ← ~φ−η∇φ(LAE({Xs, Xt})+λ1LCKM (Xs));
~ϕ← ~ϕ− η∇~ϕLAE({Xs, Xt});
M ←M − η∇Mλ1LCKM (Xt);
~θ ← ~θ − η∇~θλ2L

CE(Xs, Ys);
end

disjoint: Ys ∩ Yt = ∅.
The CKM method, briefly outlined in Section 2, can be

modified to perform heterogeneous UDA by taking advantage
of the labelled data in the source domain. This is done by
constructing a classifier, q~θ : Z → Y

s, that takes embeddings
generated by the autoencoder and classifies them into one of
the source categories. This classifier can be jointly trained
with the encoder using the cross entropy loss function,

LCE(X,Y, ~φ, ~θ) = −
|X|∑
i=1

|Ys|∑
j=1

yi,j log(q~θ(f~φ(~xi))), (3)

to encourage the features learned by the autoencoder to be
more discriminative. This results in a final optimisation ob-
jective of

min
M,~θ,~φ,~ϕ

LAE(Xs ∪Xt, ~φ, ~ϕ) + λ1LCKM (Xt,M, ~φ)

+ λ2LCE(Xs, Ys, ~φ, ~θ)

(4)

which can be optimised using Algorithm 1. The intuition
here is that the data (LAE) and label information (LCE) in
the source domain improves the representation defined by ~φ,
which in turn benefits unsupervised grouping in the target do-
main.

To evaluate heterogeneous UDA at testing time, we com-
pute the match between the learned cluster identities and the
true target sample labels.

3.2. Semi-Supervised Adaptation

Section 3.1 discusses how one can use the CKM framework
to address the task fo heterogeneous UDA, where no labelled
data is available for the target domain. We next show how to



solve the related problem of heterogeneous semi-supervised
domain adaptation, where one additionally has a small la-
belled dataset of training examples from the target domain
[10]. The features and labels in the auxiliary target domain
training set are denoted by X l

t and Y lt , respectively. To take
advantage of this information, we add a classifier rM : Z →
Yt, trained on the labelled target domain data to the model in
Section 3.1. The probability of an instance belonging to class
j is computed by

r
(j)
M (~z) =

exp{−‖~µj − ~z‖22}∑k
c=1 exp{−‖~µc − ~z‖22}

. (5)

Crucially, this classifier is parameterised in terms of the same
centroids M used for clustering. This constrains each clus-
ter to have a one-to-one association with classes and provides
a clean form of semi-supervised learning, as the cluster cen-
troids now receive a supervisory signal from both target la-
bels and the unsupervised clustering loss. To initialise the
centroids, the embeddings of all the instances in the small
labelled target domain dataset are computed. The mean em-
bedding associated with each class is then used as the starting
value for the corresponding cluster centroid,

~µj =
k

|X l
t|

|Xl
t|∑

i=1

f~φ(~xi)I(yi,j = 1), (6)

where I(·) is the indicator function that evaluates to one when
its parameter is true, and zero otherwise. We define the k-shot
loss as the cross entropy loss given predictions rM ,

Lk-shot(X,Y, ~φ,M) = −
|X|∑
i=1

|Yt|∑
j=1

yi,j log(rM (f~φ(~xi))). (7)

The objective function for this semi-supervised variant of het-
erogeneous domain adaptation with CKM is

min
M,~θ,~φ,~ϕ

LAE(Xs ∪Xt, ~φ, ~ϕ) + λ1LCKM (Xt,M, ~φ)

+ λ2LCE(Xs, Ys, ~φ, ~θ) + λ3Lk-shot(X l
t, Y

l
t ,
~φ,M),

(8)

and can be minimised through the use of Algorithm 2.
In summary we find both a feature extractor and a set of

centroids where the unlabelled data groups nicely around the
centroids, and also the labelled data can be predicted by in-
terpreting the centroids as a set of RBF classifier means.
The intuition here is that knowledge is transferred from
the source domain through its participation in supervised
(cross-entropy) and unsupervised (autoencoder) representa-
tion learning. Meanwhile, both the labelled and unlabelled
target data are both effectively utilised through learning the
set of embedding prototypes M that both group the unla-
belled data and classify the labelled data. This deep semi-
supervised learning in the target domain can be considered

Algorithm 2: Concrete k-means for Heterogeneous
Semi-Supervised Domain Adaptation

Input: Xs, Ys, Xt, X
l
t, Y

l
t , α, η

Ontput: f~φ, g~ϕ, q~θ,M

Init: ~φ, ~ϕ
while not converged do

(~φ, ~ϕ)← (~φ, ~ϕ)− α∇(~φ,~ϕ)L
AE({Xs, Xt});

end
Init: ~θ,M with {X l

t, Y
l
t }

while not converged do
~φ← ~φ−η∇~φ(L

AE({Xs, Xt})+λ1LCKM (Xt));
~ϕ← ~ϕ− η∇~ϕLAE({Xs, Xt});
M ←
M−η∇M (λ1LCKM ( ~Xt)+λ3Lk-shot(X l

t, Y
l
t ));

~θ ← ~θ − η∇~θλ2L
CE(Xs, Ys);

end

as having a similar intuition to clustering-based [12] and
entropy-minimisation [13] strategies widely used in shallow
SSL.

4. EXPERIMENTS

In this section, we experimentally evaluate the SSDA and
UDA methods described in Section 3.

4.1. Heterogeneous Unsupervised Domain Adaptation

We consider SVHN (0–4)→ MNIST (5–9) [10] as a domain
adaptation benchmark with disjoint source and target labels.
The source domain is Street View House Numbers (SVHN),
which is a real-world digit dataset collected from Google
street view. It contains 73,257 colored digits for training, and
26,032 for testing. To set up the source domain, only the im-
ages with digits 0 to 4 are selected. The target domain dataset
is built from the MNIST dataset using only digits 5 to 9 are
selected. Target image labels are only used for evaluation at
testing. In heterogeneous UDA, we pre-train a convolutional
neural network auto-encoder. To enable fair comparison with
other state-of-the-art and pave the way for experiments in the
Heterogeneous Semi-supervised UDA setting in Section 4.2,
our encoder’s architecture is same as [10]. The (pre)training
of the auto-encoder varies across the baselines as detailed
next.

We compare our CKM-UDA to the following baselines
and competitors:

1. Target Clustering. Cluster the target domain data
only. The AE is pre-trained only on the target domain,
and then the CKM and AE objectives are fine-tuned
together on target domain.



Method Accuracy

Target Clustering 82.1±2.1%
Src + Targ Clustering 86.7±1.8%
DEC-UDA [8] 91.6±3.8%
DCN-UDA [9] 90.1±1.0%

CKM-UDA 96.12±1.7%

Table 1. Heterogeneous unsupervised domain adaptation ac-
curacy (± one standard deviation) on SVHN (0 − 4) →
MNIST (5− 9).

2. Src+Targ Clustering. The AE model is pre-trained on
both source and target domain data. Then the CKM
clustering and AE objectives are fine-tuned on the tar-
get domain.

3. Deep Embedded Clustering (DEC) [8]: We instanti-
ate the UDA algorithm defined in Section 3.1 and Al-
gorithm 1 by plugging in DEC instead of CKM.

4. Deep Clustering Network (DCN) [9]: We instantiate
the same UDA algorithm using DCN rather than CKM
as the base clustering algorithm.

The target domain accuracy of each method is shown in
Table 1. From the results, we make the following observa-
tions: (1) Our CKM-based DA algorithm performs best over-
all, demonstrating the efficacy of our end-to-end deep clus-
tering approach compared to the DEC and DCN alternatives.
This is attributed to the benefit of CKM’s unique ability to op-
timise hard clustering jointly and end-to-end with the rest of
the DA model unlike DEC and DCN. (2) The margin between
CKM-UDA and Target Clustering shows the benefit of using
source data, as opposed to using target data alone. (3) The
margin between CKM-UDA and Src+Targ clustering shows
the benefit of using source labels, as opposed to solely source
images in domain adaptation.

4.2. Heterogeneous Semi-Supervised Domain Adaptation

We finally evaluate our model on the heterogeneous semi-
supervised domain adaptation problem introduced by [10].
This experiment evaluates (SVHN 0-4) → (MNIST 5-9)
transfer where a few (K = 2 . . . 5) labelled examples of the
target domain classes available during training. The architec-
ture of our model in this section is the same as in the previous
Section 4.1, except we add the target domain classifier as
described in Section 3.2. For competitors we consider state
of the art alternatives CFSM [2] and Label-Efficient-Transfer
(LET) [10]. We use the same data partitioning and deep
architecture as [10, 2] for fair comparison.

The results in Table 2 show that our semi-supervised
CKM-SSDA method outperforms these state of the art al-

Method k = 2 k = 3 k = 4 k = 5

LET [10] 91.7±0.5 93.6±0.6 94.2±0.6 95.0±0.4
CFSM [2] 93.5±0.5 94.8±0.5 95.5±0.3 96.7±0.2

CKM-SSDA 98.0±0.1 98.2±0.1 98.3±0.1 98.4±0.1

Table 2. Heterogeneous Semi-supervised DA on SVHN (0-4)
→MNIST (5-9). Accuracy (%,± one standard deviation) for
k = 2 . . . 5 labels per class in the target domain.

ternatives across the range of few-shot data evaluated. Com-
pared to the competing algorithms CFSM and LET, we at-
tribute the good quantitative performance of CKM to our
effective clustering algorithm and better inductive bias for
domain adaptation. LET uses unlabelled target domain data
primarily for domain alignment by making the domains in-
distinguishable by discriminator. Domain alignment is not
an ideal objective given disjoint labels. Moreover, we make
better use of the labelled and unlabelled target data by finding
both an embedding and a set of centroids where the unla-
belled data groups nicely around the centroids, and also the
labelled data can be predicted by interpreting the centroids
as the RBF classifier means. In contrast, CFSM does not try
to align the domains, but it makes a factorisation assump-
tion that each example should be well explained by a set of
low-entropy factors. However, this is not ideal for grouping
the data into discrete categories compared to our clustering
assumption. In contrast our CKM-SSDA both effectively
transfers from source to target while also making good use of
both labelled and unlabelled target data in an end-to-end deep
learning setting.

5. CONCLUSION

This paper shows how the concrete k-means deep clustering
framework can be modified to perform heterogeneous domain
adaptation. Two variants of the domain adaptation problem
are considered: one where no labels are available for target
domain samples, and another where only a few target do-
main examples are labelled. Our experimental results show
that the proposed method is competitive with state-of-the-art
approaches for solving deep clustering problems, and sur-
passes state-of-the-art for heterogeneous domain adaptation
problems. Our stochastic hard assignment method is able to
estimate gradients of the nondifferentiable k-means loss func-
tion with respect to cluster centres. This, in turn, enables end-
to-end training of a neural network feature extractor and a
set of cluster centroids in this latent space. We attribute the
success of our domain adaptation approaches to this ability
to jointly train hard-assignment clustering models and neural
networks.
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