10 research outputs found

    Aldehyde dehydrogenase-1a1 induces oncogene suppressor genes in B cell populations

    Get PDF
    AbstractThe deregulation of B cell differentiation has been shown to contribute to autoimmune disorders, hematological cancers, and aging. We provide evidence that the retinoic acid-producing enzyme aldehyde dehydrogenase 1a1 (Aldh1a1) is an oncogene suppressor in specific splenic IgG1+/CD19− and IgG1+/CD19+ B cell populations. Aldh1a1 regulated transcription factors during B cell differentiation in a sequential manner: 1) retinoic acid receptor alpha (Rara) in IgG1+/CD19− and 2) zinc finger protein Zfp423 and peroxisome proliferator-activated receptor gamma (Pparg) in IgG1+/CD19+ splenocytes. In Aldh1a1−/− mice, splenic IgG1+/CD19− and IgG1+/CD19+ B cells acquired expression of proto-oncogenic genes c-Fos, c-Jun, and Hoxa10 that resulted in splenomegaly. Human multiple myeloma B cell lines also lack Aldh1a1 expression; however, ectopic Aldh1a1 expression rescued Rara and Znf423 expressions in these cells. Our data highlight a mechanism by which an enzyme involved in vitamin A metabolism can improve B cell resistance to oncogenesis

    Escherichia coli O157:H7 in retail lettuce (Lactuca sativa) in Addis Ababa city: Magnitude of contamination and antimicrobial susceptibility pattern

    No full text
    Escherichia coli O157:H7 is an important foodborne pathogen but largely under investigated in Africa. The objectives of this study were to estimate the prevalence and pattern of antimicrobial resistance of E. coli O157:H7 in lettuce in Addis Ababa, Ethiopia. A total of 390 retail lettuce samples were collected across the 10 subcities of Addis Ababa. E. coli O157:H7 was isolated and identified following ISO-16654:2001 standard. The isolates were further tested for antimicrobial susceptibility to 13 antimicrobials using the Kirby–Bauer disk diffusion method. Out of the 390 lettuce samples examined, two (0.51%) carried E. coli O157:H7. The antimicrobial susceptibility pattern of strains showed resistance to ampicillin (100%) and tetracycline (50.0%). One of the two isolates was multidrug resistant to two antimicrobials tested. The results of this study demonstrate the presence of drug-resistant E. coli O157:H7 in lettuce in markets in Addis Ababa. Despite the low prevalence, its presence in a product that is eaten raw highlights potential public health risk in the area associated with this pathogen

    Prevalence, antibiogram, and multidrug-resistant profile of E. coli O157: H7 in retail raw beef in Addis Ababa, Ethiopia

    No full text
    Escherichia coli O157:H7 is an emerging foodborne pathogen of public health importance. The objectives of this study were to estimate the prevalence and evaluate the antimicrobial susceptibility pattern and multidrug-resistant profile of E. coli O157:H7 isolated from raw beef sold in butcher shops in Addis Ababa, Ethiopia. A total of 384 raw beef samples were collected from randomly selected butcher shops across the 10 sub-cities of Addis Ababa. E. coli O157:H7 was isolated following ISO-16654:2001 standard, and isolates were tested for resistance to 13 antimicrobial agents using the Kirby–Bauer disk diffusion method. Out of the 384 retail raw beef samples examined, 14 (3.64%) (95% CI = 1.77–5.51%) carried E. coli O157:H7 serotype. Of the 14 E. coli O157:H7 isolates, 8 (57.14%) were found to be resistant to three or more antimicrobial categories. The frequency of resistant phenotype was more common for ampicillin (92.8%), nitrofurantoin (92.8%), and tetracycline (50%). Multidrug-resistant E. coli O157:H7 were present in raw beef sold in butcher shops in Addis Ababa. Thus, more stringent monitoring of antimicrobial use in both human and animal populations should be implemented. In addition, further studies should be conducted to understand the E. coli O157:H7 points of contamination and define appropriate risk mitigation strategies

    Agonists of Toll-Like Receptor 9

    No full text
    corecore