16 research outputs found

    Granular segregation in a thin drum rotating with periodic modulation

    Get PDF
    We present the results of an experimental investigation into the effects of a sinusoidal modulation of the rotation rate on the segregation patterns formed in thin drum of granular material. The modulation transforms the base pattern formed under steady conditions by splitting or merging the initial streaks. Specifically, the relation between the frequency of modulation and the rotation rate determines the number of streaks which develop from the base state. The results are in accord with those of Fiedor and Ottino [J. Fluid. Mech. 533, 223 (2005)10.1017/S0022112005003952], and we show that their ideas apply over a wide range of parameter space. Furthermore, we provide evidence that the observed relationship is maintained for filling fractions far from 50% and generalize the result in terms of the geometry of the granular deposit

    Dendritic cells in cancer immunology and immunotherapy

    Get PDF
    Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.S.K.W. is supported by a European Molecular Biology Organization Long- Term Fellowship (grant ALTF 438– 2016) and a CNIC–International Postdoctoral Program Fellowship (grant 17230–2016). F.J.C. is the recipient of a PhD ‘La Caixa’ fellowship. Work in the D.S. laboratory is funded by the CNIC, by the European Research Council (ERC Consolidator Grant 2016 725091), by the European Commission (635122-PROCROP H2020), by the Ministerio de Ciencia, Innovación e Universidades (MCNU), Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (FEDER) (SAF2016-79040-R), by the Comunidad de Madrid (B2017/BMD-3733 Immunothercan- CM), by FIS- Instituto de Salud Carlos III, MCNU and FEDER (RD16/0015/0018-REEM), by Acteria Foundation, by Atresmedia (Constantes y Vitales prize) and by Fundació La Marató de TV3 (201723). The CNIC is supported by the Instituto de Salud Carlos III, the MCNU and the Pro CNIC Foundation, and is a Severo Ochoa Centre of Excellence (SEV-2015-0505).S

    The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces

    No full text
    Here, we investigate experimentally and theoretically the factors that determine the size of the emulsion droplets produced by membrane emulsification in "batch regime" (without applied crossflow). Hydrophilic glass membranes of pore diameters between 1 and 10 μm have been used to obtain oil-in-water emulsions. The working surfactant concentrations are high enough to prevent drop coalescence. Under such conditions, the size of the formed drops does not depend on the surfactant type and concentration, on the interfacial tension, or on the increase of viscosity of the inner (oil) phase. The drops are monodisperse when the working transmembrane pressure is slightly above the critical pressure for drop breakup. At higher pressures, the size distribution becomes bimodal: a superposition of a "normal" peak of monodisperse drops and an "anomalous" peak of polydisperse drops is observed. The theoretical model assumes that, at the moment of breakup, the hydrodynamic ejection force acting on the drop is equal to the critical capillary force that corresponds to the stability-instability transition in the drop shape. The derived equations are applied to predict the mean size of the obtained drops in regimes of constant flow rate and constant transmembrane pressure. Agreement between theory and experiment is established for the latter regime, which corresponds to our experimental conditions. The transition from unimodal to bimodal drop size distribution upon increase of the transmembrane pressure can be interpreted in terms of the transition from "dripping" to "jetting" mechanisms of drop detachment. © 2008 American Chemical Society
    corecore