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Granular segregation in a thin drum rotating with periodic modulation
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We present the results of an experimental investigation into the effects of a sinusoidal modulation of the
rotation rate on the segregation patterns formed in thin drum of granular material. The modulation transforms the
base pattern formed under steady conditions by splitting or merging the initial streaks. Specifically, the relation
between the frequency of modulation and the rotation rate determines the number of streaks which develop from
the base state. The results are in accord with those of Fiedor and Ottino [J. Fluid. Mech. 533, 223 (2005)], and
we show that their ideas apply over a wide range of parameter space. Furthermore, we provide evidence that the
observed relationship is maintained for filling fractions far from 50% and generalize the result in terms of the
geometry of the granular deposit.
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I. INTRODUCTION

When a granular mixture flows inside a rotating drum
or tumbler, segregation of the constituent components can
occur [1,2]. In long horizontal rotating drums the different
particles typically separate into vertical bands that interact
with each other [3–5]. An essential part of the formation of
such vertical bands is the initial creation of a segregated core
of grains which is formed in the radial direction of the drum
[5–8]. Understanding the origin of this initial radial segregation
is a key factor in achieving a better understanding of the
complete segregation process. One way to isolate and explore
radial segregation is to use a thin rotating drum where axial
segregation is suppressed.

Radial segregation in thin rotating drums occurs, for exam-
ple, when particles differ in density [9] or size. In the latter case,
smaller particles group to form a central core, and larger ones
accumulate in the outer wall region. As the partially filled drum
rotates, avalanching takes place down the free surface, and
inertial and percolation effects lead to the deposition of small
particles beneath larger ones [10–12]. At low rotation rates,
the central core of small particles evolves into a qualitatively
different segregated pattern [13–15] where small particles are
concentrated into streaks (sometimes referred to as petals or
lobes). In our experiment this occurs below approximately
0.4 rad/s (4 rpm), and examples of these streaks are shown in
Fig. 1. This type of segregation is related to the stripe formation
induced by avalanching during the building of a pile [16,17].
Nevertheless, other mechanisms play important roles in the
pattern formation in a rotating drum as the streaks can be
much thicker than the flowing avalanche layer at the granular
surface [18–20].

The pattern which develops also depends on the filling level
of the drum. Geometrical aspects are crucial when the filling
level of the drum is far from 50% [15,21–24]. For the case of a
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half-filled rotating drum, however, aspects such as the diameter
of the drum, the proportion of small particles in the sample,
and the rotation frequency are all important in the pattern
selection process [18]. The number of streaks in the pattern is
determined by a competition between stripe formation (in the
surface layer) and coarsening.

A feature of this segregation process is that an uphill
wave of big particles travels from the tip of the streaks of
small particles to the center of the drum. Streaks are stable if
they are separated by an angular distance, which allows the
uphill wave to reach the center of the drum and flatten the
surface. Otherwise, mixing occurs and the streaks merge [20]
in the form of streak coarsening as reported in Ref. [19].
In practice, the results reported in Ref. [18] reveal that for
rotation frequencies ω of the order of 0.05 rad/s or higher, the
time lapse between the passage of two consecutive streaks (T )
was independent of the frequency of rotation. This behavior
implies an inverse proportionality between the number of
streaks (Nb) developed in the drum and the frequency of
rotation: Nb ∝ 1/ω. Moreover, for the granular mixture used
in Ref. [18], it was empirically found that T = 0.46 rc,
where T was measured in seconds and rc (which is the
radius of the initial core of small particles) was measured in
centimeters.

More recently it has been shown that the pattern established
in a rotating drum can be controlled by modulating the rotation
speed. Fiedor and Ottino [25] demonstrated that imposing
a sinusoidal modulation on the rotation speed leads to the
formation of patterns with different numbers of streaks to those
obtained with a constant speed. For the particular case of a
half-filled drum, odd frequencies of modulation (measured
as the number of cycles per rotation, fE) suppress streak
segregation. On the other hand, modulation frequencies with
an even number of cycles per rotation lead to a well-defined
pattern where, at least for the cases investigated in Ref. [25],
the number of streaks (N ) was half the number of cycles per
rotation:

N = fE/2. (1)
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FIG. 1. (Color online) (a) Images of typical patterns developed when using a five-streak pattern (left figure) as the base state. At the top
(bottom), patterns obtained after a streak-merging (splitting) process. In all these cases the frequency of rotation was ω = 0.139 rad/s, and the
modulation frequency νM was varied as indicated in each figure. The definition of νwave is given in the main body text. (b) Schematic of the
drum indicating θ , the angular distance over which the streaks were arranged.

The explanation given for this behavior is that segregation
takes place only during periods of acceleration in the flowing
layer. This suggests the segregation pattern can be controlled
by selecting an appropriate modulation frequency.

We explore the effect of the modulation of the rotation
rate on the segregated pattern for different frequencies of
modulation, filling fractions, amplitudes of modulation, and
initial rotation rates of the drum. This was carried out by
first obtaining a stable base pattern at a constant speed of
rotation and then applying a modulation. The number of
streaks developed before and after modulation was measured,
and this enabled a direct comparison with the numerical and
experimental work of Fiedor and Ottino [25]. The results
obtained support for their calculations and observations and
provide a generalization of their ideas over a wide range of
rotation speeds, modulation frequencies, and filling fractions.
In addition, we show that modulation may lead to either
an increase or a reduction of the number of streaks. This
demonstrates the modulation of rotation speed affects the final
pattern through either streak splitting or streak merging.

II. EXPERIMENTAL SETUP

The experimental apparatus comprised a 3 mm thick drum
of D = 24.5 cm diameter. The drum was machined from
aluminium with a front wall of glass to allow direct observation
of the patterns. The drum was mounted vertically and driven
by a feedback-controlled DC motor connected to the drum via
a belt drive attached to a gearbox. The supply to the motor was
the sum of a steady voltage from a controlled DC supply and a
sinusoidal modulation provided by a function generator. In an
initial set of experiments the drum was half filled (±2%) with
a mixture of glass particles of different sizes but equal density,
as in Ref. [18]. The smaller white particles had a diameter
of 120 ± 30 μm, whereas the larger green particles had a
diameter of 710 ± 30 μm. The proportion of small particles
gave a volume fraction of φ = 0.35 with respect to the large
particles. A CCD camera was used to capture images, which
were stored on an associated computer for further analysis.

A stable base pattern with a well-defined number of
streaks was established by rotating the drum at a constant
angular velocity (ω). In the first series of experiments, with
the half-filled rotating drum, the values of ω used were
0.139 rad/s, 0.131 rad/s, and 0.095 rad/s, which resulted in
patterns with five, six, and eight streaks, respectively. Once
the base pattern was established, the angular velocity of the
drum was modulated with a sinusoidal frequency νm and an
amplitude of 0.05 rad/s. Several modulation frequencies were
superimposed on each of the steady rotation rates and led to
transformation of the base patterns.

III. DEPENDENCE OF THE PATTERN
ON THE MODULATION FREQUENCY

The first experimental finding was that the pattern transfor-
mation was dictated by the ratio of the frequency of modulation
(νM ) to the frequency of the granular wave (νwave), which
travels from the tip of the streaks to the center of the drum. If
the ratio νM/νwave multiplied by the number of streaks in the
base pattern was a small integer, stable patterns developed with
a number of streaks that precisely correspond to this integer.
As this number was approached, the uniformity of the size
and the distribution of the streaks increased. This finding is
further emphasized by the improvement in pattern definition
which results for νM/νwave = 1 although splitting or merging
of streaks does not occur in this case. On the contrary, if the
ratio νM/νwave multiplied by the number of streaks in the base
pattern was far from a small integer, a unstable configuration
developed (i.e., patterns were not well defined) since they
correspond to states with noninteger numbers of streaks and
hence were incompatible with the boundary conditions.

In summary, once stable patterns were developed, νM/νwave

determined the final number of petals as νM/νwave = N/Nb,
where N is the number of petals in the final state and Nb is the
number of petals in the base state. For all base states, a ratio of
νM/νwave > 1 resulted in streak splitting while νM/νwave < 1
led to streak merging. In Fig. 1 we present images of the
patterns which developed after a modulation frequency was
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FIG. 2. (Color online) Number of streaks (N ) developed for
different modulation frequencies (νM ). Results, obtained with a
half-filled drum, are presented for base patterns with different number
of streaks Nb (and hence different ω) as indicated in the legend.

applied to a base pattern of five streaks formed with ω =
0.139 rad/s where N/Nb is determined by νM/νwave. This
finding will be discussed below using ideas proposed by Fiedor
and Ottino [22].

In Fig. 2 results are presented for the number of streaks
developed after applying the modulation frequency to several
initial base patterns. As shown in Fig. 1, increasing the value
of the modulation frequency leads to a pattern with a larger
number of streaks. The correlation is linear with a slope that
depends on the initial number of streaks in the base pattern
(Nb): the higher Nb, the greater the proportionality constant is
between N and νM . This suggests the number of streaks in the
base pattern is a scaling factor.

As explained above, in a drum rotated at constant speed,
the time lapse (T ) between the passage of two streaks is
approximately constant so that the number of streaks (Nb)
is inversely proportional to the rotation frequency (ω) [18].
Hence, an appropriate way to collapse the data is to plot Nω

versus νM , as shown in Fig. 3. The best linear fit applied to all
the data is Nω = (3.16 ± 0.08)νM . This result is analogous
to the relationship given in Eq. (1) [25], which states that the
number of streaks developed is half the number of cycles per
rotation (fE). Indeed, fE can be written in terms of both the
modulation frequency (νM ) and the constant rotation frequency
(ω) as fE = 2πνM/ω. Substituting this for fE in Eq. (1) gives
N = πνM/ω, which implies a correlation,

Nω = πνM, (2)

similar to the one displayed by the data in Fig. 3. It should
be noted that unstable patterns were obtained for combined
values of νM and ω that imply noninteger values of N .
This observation is equivalent to the one made by Ref. [25]
that odd values of fE produced poorly defined patterns.
The result that νM/νwave = N/Nb can be also deduced from
Eq. (2). To this end, it should be appreciated that νwave is
approximately the inverse of the time lapse between the
passage of two consecutive streaks: νwave = 1/T . Then, the
constant frequency of rotation of the drum (ω) can be related
with the frequency of the granular wave (νwave), π

ω
= Nb

νwave
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FIG. 3. (Color online) Number of streaks multiplied by the con-
stant rotation frequency (ω) for different modulation frequencies and
a filling fraction of 50%. A linear fit of the results gives a relationship
Nω = (3.16 ± 0.08)νM . As in Fig. 2, we present results obtained
with a half-filled drum with different number of streaks in the base
pattern Nb (and hence different ω) as indicated in the legend.

where both sides of the equality account for the time taken by
the drum to perform half a rotation. Replacing ω = νwave

π
Nb

in
Eq. (2), we obtain νM/νwave = N/Nb.

IV. ROLE OF FILLING FRACTION

The dependence of the pattern transformation on ω and νM

was extended over a wide range of filling fractions (ff ) using
the experimental method detailed above for a half-filled drum
and the results are shown in Fig. 4. For each of the filling
fractions, the resulting number of streaks was documented
for various base states subjected to different frequencies of
modulation. As in the case of the half-filled drum, filling
fractions in the range 5%–53% exhibited a linear dependence
of Nω on νM (Fig. 5). Interestingly, filling fractions different
from 50% gave rise to constants of proportionality between
Nω and νM different from π found for ff = 50%. From now
on, we will define θc to be the proportionality ratios such that
Nω = θcνM .

In Fig. 6 the results of θc (which are displayed by circles)
reveal a monotonic increase with ff . Decrease of the filling
fraction produced a corresponding reduction in the associated
angle (θ ) at which the particles were deposited, and this
determined the arrangement of the streaks in the drum. These
are the values indicated in Fig. 6 by squares, which were
calculated as the angle between the top and bottom of the
avalanching layer measured from the center of the drum
[see the schematic diagram in Fig. 1(b)]. The equivalence
between the measured angular distance over which the
particles are distributed in the drum, θ , and the constant of
proportionality determined from the relation Nω = θcνM for
different filling fractions is striking. Indeed, if we assume
that the surface of the avalanche was flat, θ can be obtained
analytically as a function of the filling fraction (ff ) as follows.
The filling fraction is related to the area of the circular segment
occupied by the grains ACS [green surface in Fig. 1(b)] and the
projected area of the drum AD as ff = 100ACS

AD
. The area of
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FIG. 4. (Color online) Six streak patterns for filling fractions of 20%, 26%, 39%, and 50% (left to right).

the circular segment is given by ACS = R2

2 [θ − sin(θ )] and the
projected area of the drum AD = πR2, where R = D/2. This
gives ff = 100 [θ−sin(θ)]

2π
, which is indicated by the continuous

line in Fig. 6.
In summary,

Nω = θνM (3)

is a generalization of the previously result Nω = πνM [Eq. (2)]
for the half-filled rotating drum. This geometrical control
of the pattern selection process can be understood recalling
that segregation is produced in each acceleration phase of
the drum [25]. Therefore, filling fractions below 50% imply
that in a complete rotation of the drum, the grains perform a
number of periods of acceleration smaller than N = πνM/ω.
Indeed, the number of periods of acceleration depends on
the angle θ , which is the proportionality constant of the
generalized equation for different filling fractions.

Interestingly, varying the filling fraction displaced the
center of the streaks from the center of the drum. As can be
seen in Fig. 4, for ff < 50% the center of the pattern moved
to the left (uphill), and for ff > 50% (not shown) the point
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FIG. 5. (Color online) Nω measured as a function of νM for ff =
43% and Nb = 5 (o), 6 (x), 8 (�), and 10 (�); ff = 34.2% and Nb =
5 (�) and 7 (�); ff = 25.7% and Nb = 6 (�); ff = 20% and Nb = 6
(�); and ff = 10% subjected to an initial steady rotation of ω = 0.04
(∗) and 0.05 rad/s (•). A linear fit of the form Nω = θcνM returns
values of θc = 2.86 ± 0.06, 2.57 ± 0.08, 2.23 ± 0.06, 1.97 ± 0.04,
and 1.45 ± 0.04 for filling fractions of 43%, 34.2%, 25.7%, 20%, and
10%, respectively.

moved to the right. The width and spacing of the streaks also
decrease with decreasing filling fraction. Furthermore, for very
small filling fractions (�10%), no streaks were discernible
from the radially segregated initial core, even after 18 h of
steady rotation. Application of a modulation of the angular
frequency of rotation rapidly produced petal patterns even in
the absence of a base pattern as shown in Fig. 7, and the familiar
linear relationship between Nω and νM was uncovered, as
shown in Fig. 5. Very high filling fractions (ff > 55%)
led to nonuniform base states, comprising asymmetrically
distributed streaks of unequal size, and modulation of the
angular frequency of the drum did not result in the splitting
or merging of the streaks. Indeed, it was observed that, for
a filling fraction of 58%, the streaks in the base state were
orientated tangentially to the locus of the streak center, similar
to the pattern previously reported by Gray and Hutter [26] for
a greater filling fraction.

V. EFFECT OF THE AMPLITUDE OF MODULATION

Finally, the role of the amplitude of the modulation on
the splitting or merging process was investigated for various
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FIG. 6. (Color online) θ versus the filling fraction (ff ). o rep-
resent the constants of proportionality, θc, in the linear relationship
Nω = θcνM determined from fits to the data collapse from various
base states. � indicate the angular distance θ over which the particles
deposit in the drum measured [as schematized in Fig. 1(b)] using
image analysis. The solid line represents the analytical relation
between θ and ff obtained assuming that the avalanching surface
is flat.
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FIG. 7. (Color online) A filling fraction of 10% with steady
rotation of ω = 0.095 rad/s (left) and exhibiting four streaks after
modulation with νM = 0.0045 rad/s (right).

filling fractions. Decreasing the amplitude of modulation was
found to increase the timescale of the pattern transformation.
In Fig. 8 the time taken for the transition from a six-streak
base state to a five-streak final state is shown as a function of
the amplitude of modulation for filling fractions of 50% and
20%. The results suggest that a finite amplitude is required for
pattern transformation to occur and that the required amplitude
scales with the filling fraction. Providing that the amplitude
of modulation was sufficient for transformation, however,
the number of streaks formed for a specific frequency of
modulation was found to be independent of the amplitude
of modulation.

VI. DISCUSSION

We have shown that the number of streaks developed in
a drum with a modulated rotation rate grows linearly with
the frequency of modulation. The proportionality constant is
determined by the mean value of the frequency of rotation
of the drum and is equivalent to the angular distance over
which the particles are deposited. This behavior is in accord
with the findings of Fiedor and Ottino [25], which show
that the number of streaks developed in a half-filled rotating
drum is half the number of cycles per rotation. Importantly
the expression reported here applies over a range of filling
fractions 5% < ff < 55%. This applies to both constant and
modulation frequencies and is wider than had previously been
appreciated.

Finally, we stress that our results contain an important
implication for the understanding of radial streak segregation
in rotating drums. Indeed, the reason argued in Ref. [25] to
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FIG. 8. (Color online) The time taken for a transition from six
petals base pattern to five petals pattern measured as a function of the
amplitude of the modulation for ff = 50% (o) and ff = 20% (�).
The finite amplitude below which the transition was not observed to
occur, even after time periods of ∼24 h, can be seen to increase with
increased filling fraction.

explain the effects of modulation was that streaks preferentially
developed in each acceleration period. Here we explicitly show
that each modulation (acceleration or deceleration) gives rise
to streak formation. Moreover, streak merging occurs if the
frequency of modulation is less than the frequency of the uphill
granular wave. In other words, modulation is a mechanism of
streak formation and an effective way of driving the splitting
or merging of an existing pattern. This is in accord with
Ref. [18], where two streaks were shown to merge if their
angular distance was insufficient to allow the uphill wave to
reach the center of the drum. Hence we propose that each
modulation leads to a merging process during the acceleration
phase and a splitting process during the deceleration phase.
This conjecture is supported by the observation that the uphill
wave reached the center of the drum during the slowest part of
the rotation period.
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