1,173 research outputs found

    Non-developmental item computer systems and the malicious software threat

    Get PDF
    The following subject areas are covered: a DOD development system - the Army Secure Operating System; non-development commercial computer systems; security, integrity, and assurance of service (SI and A); post delivery SI and A and malicious software; computer system unique attributes; positive feedback to commercial computer systems vendors; and NDI (Non-Development Item) computers and software safety

    Return-to-launch-site trajectory shaping

    Get PDF
    The results are presented of a study to show the effect on flyback trajectories of constant inertial attitude during the fuel dissipation phase of a return-to-launch-site abort. It is shown that the value of the constant inertial attitude can be chosen to shape the flyback trajectory

    Software engineering ethics

    Get PDF
    Software engineering ethics is reviewed. The following subject areas are covered: lack of a system viewpoint; arrogance of PC DOS software vendors; violation od upward compatibility; internet worm; internet worm revisited; student cheating and company hiring interviews; computing practitioners and the commodity market; new projects and old programming languages; schedule and budget; and recent public domain comments

    Return-to-launch-site three degree of freedom analysis, constant inertial attitude during the fuel dissipation phase

    Get PDF
    Results are presented of a study to show the effect of selecting a constant inertial attitude during the fuel dissipation phase of a return-to-launch-site abort. Results are also presented which show that the selection of the constant inertial attitude will affect the arrival point on the range-velocity target line. An alternate selection of the inertial attitude will provide control over the trajectory shape

    Towards an exact reconstruction of a time-invariant model from time series data

    Get PDF
    Dynamic processes in biological systems may be profiled by measuring system properties over time. One way of representing such time series data is through weighted interaction networks, where the nodes in the network represent the measurables and the weighted edges represent interactions between any pair of nodes. Construction of these network models from time series data may involve seeking a robust data-consistent and time-invariant model to approximate and describe system dynamics. Many problems in mathematics, systems biology and physics can be recast into this form and may require finding the most consistent solution to a set of first order differential equations. This is especially challenging in cases where the number of data points is less than or equal to the number of measurables. We present a novel computational method for network reconstruction with limited time series data. To test our method, we use artificial time series data generated from known network models. We then attempt to reconstruct the original network from the time series data alone. We find good agreement between the original and predicted networks

    Space shuttle three main engine return to launch site abort

    Get PDF
    A Return-to-Launch-Site (RTLS) abort with three Space Shuttle Main Engines (SSME) operational was examined. The results are trajectories and main engine cutoff conditions that are approximately the same as for a two SSME case. Requiring the three SSME solution to match the two SSME abort eliminates additional crew training and is accomplished with negligible software impact

    A new paradigm for SpeckNets:inspiration from fungal colonies

    Get PDF
    In this position paper, we propose the development of a new biologically inspired paradigm based on fungal colonies, for the application to pervasive adaptive systems. Fungal colonies have a number of properties that make them an excellent candidate for inspiration for engineered systems. Here we propose the application of such inspiration to a speckled computing platform. We argue that properties from fungal colonies map well to properties and requirements for controlling SpeckNets and suggest that an existing mathematical model of a fungal colony can developed into a new computational paradigm

    Changing the view:towards the theory of visualisation comprehension

    Get PDF
    The core problem of the evaluation of information visualisation is that the end product of visualisation - the comprehension of the information from the data - is difficult to measure objectively. This paper outlines a description of visualisation comprehension based on two existing theories of perception: principles of perceptual organisation and the reverse hierarchy theory. The resulting account of the processes involved in visualisation comprehension enables evaluation that is not only objective, but also non-comparative, providing an absolute efficiency classification. Finally, as a sample application of this approach, an experiment studying the benefits of interactivity in 3D scatterplots is presented

    Reverse engineering of drug induced DNA damage response signalling pathway reveals dual outcomes of ATM kinase inhibition

    Get PDF
    The DNA Damage Response (DDR) pathway represents a signalling mechanism that is activated in eukaryotic cells following DNA damage and comprises of proteins involved in DNA damage detection, DNA repair, cell cycle arrest and apoptosis. This pathway consists of an intricate network of signalling interactions driving the cellular ability to recognise DNA damage and recruit specialised proteins to take decisions between DNA repair or apoptosis. ATM and ATR are central components of the DDR pathway. The activities of these kinases are vital in DNA damage induced phosphorylational induction of DDR substrates. Here, firstly we have experimentally determined DDR signalling network surrounding the ATM/ATR pathway induced following double stranded DNA damage by monitoring and quantifying time dependent inductions of their phosphorylated forms and their key substrates. We next involved an automated inference of unsupervised predictive models of time series data to generate in silico (molecular) interaction maps. We characterized the complex signalling network through system analysis and gradual utilisation of small time series measurements of key substrates through a novel network inference algorithm. Furthermore, we demonstrate an application of an assumption-free reverse engineering of the intricate signalling network of the activated ATM/ATR pathway. We next studied the consequences of such drug induced inductions as well as of time dependent ATM kinase inhibition on cell survival through further biological experiments. Intermediate and temporal modelling outcomes revealed the distinct signaling profile associated with ATM kinase activity and inhibition and explained the underlying signalling mechanism for dual ATM functionality in cytotoxic and cytoprotective pathways

    Return-to-launch-site variable range-velocity line

    Get PDF
    The effect of moving the return-to-launch-site (RTLS) range-velocity (R-V) line closer to the landing site was studied. Results are presented which show that a five nautical mile shift in R-V line causes the last RTLS abort to occur approximately one second earlier and that the excess range capability to terminal-area-energy-management interface can be dissipated without an excessive roll angle history
    corecore