447 research outputs found

    Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction

    Full text link
    With the unprecedented photometric precision of the Kepler Spacecraft, significant systematic and stochastic errors on transit signal levels are observable in the Kepler photometric data. These errors, which include discontinuities, outliers, systematic trends and other instrumental signatures, obscure astrophysical signals. The Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline tries to remove these errors while preserving planet transits and other astrophysically interesting signals. The completely new noise and stellar variability regime observed in Kepler data poses a significant problem to standard cotrending methods such as SYSREM and TFA. Variable stars are often of particular astrophysical interest so the preservation of their signals is of significant importance to the astrophysical community. We present a Bayesian Maximum A Posteriori (MAP) approach where a subset of highly correlated and quiet stars is used to generate a cotrending basis vector set which is in turn used to establish a range of "reasonable" robust fit parameters. These robust fit parameters are then used to generate a Bayesian Prior and a Bayesian Posterior Probability Distribution Function (PDF) which when maximized finds the best fit that simultaneously removes systematic effects while reducing the signal distortion and noise injection which commonly afflicts simple least-squares (LS) fitting. A numerical and empirical approach is taken where the Bayesian Prior PDFs are generated from fits to the light curve distributions themselves.Comment: 43 pages, 21 figures, Submitted for publication in PASP. Also see companion paper "Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves" by Martin C. Stumpe, et a

    Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP

    Get PDF
    The conserved histone locus body (HLB) assembles prior to zygotic gene activation early during development and concentrates factors into a nuclear domain of coordinated histone gene regulation. Although HLBs form specifically at replication-dependent histone loci, the cis and trans factors that target HLB components to histone genes remained unknown. Here we report that conserved GA repeat cis elements within the bidirectional histone3ā€“histone4 promoter direct HLB formation in Drosophila. In addition, the CLAMP (chromatin-linked adaptor for male-specific lethal [MSL] proteins) zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. We demonstrated previously that CLAMP also promotes the formation of another domain of coordinated gene regulation: the dosage-compensated male X chromosome. Therefore, CLAMP binding to GA repeat motifs promotes the formation of two distinct domains of coordinated gene activation located at different places in the genome

    A systematic review and meta-synthesis of the impact of low back pain on people's lives

    Get PDF
    Copyright @ 2014 Froud et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Background - Low back pain (LBP) is a common and costly problem that many interpret within a biopsychosocial model. There is renewed concern that core-sets of outcome measures do not capture what is important. To inform debate about the coverage of back pain outcome measure core-sets, and to suggest areas worthy of exploration within healthcare consultations, we have synthesised the qualitative literature on the impact of low back pain on peopleā€™s lives. Methods - Two reviewers searched CINAHL, Embase, PsycINFO, PEDro, and Medline, identifying qualitative studies of peopleā€™s experiences of non-specific LBP. Abstracted data were thematic coded and synthesised using a meta-ethnographic, and a meta-narrative approach. Results - We included 49 papers describing 42 studies. Patients are concerned with engagement in meaningful activities; but they also want to be believed and have their experiences and identity, as someone ā€˜doing battleā€™ with pain, validated. Patients seek diagnosis, treatment, and cure, but also reassurance of the absence of pathology. Some struggle to meet social expectations and obligations. When these are achieved, the credibility of their pain/disability claims can be jeopardised. Others withdraw, fearful of disapproval, or unable or unwilling to accommodate social demands. Patients generally seek to regain their pre-pain levels of health, and physical and emotional stability. After time, this can be perceived to become unrealistic and some adjust their expectations accordingly. Conclusions - The social component of the biopsychosocial model is not well represented in current core-sets of outcome measures. Clinicians should appreciate that the broader impact of low back pain includes social factors; this may be crucial to improving patientsā€™ experiences of health care. Researchers should consider social factors to help develop a portfolio of more relevant outcome measures.Arthritis Research U

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs during Differentiation and Regeneration

    Get PDF
    SummaryBMP and Wnt signaling pathways control essential cellular responses through activation of the transcription factors SMAD (BMP) and TCF (Wnt). Here, we show that regeneration of hematopoietic lineages following acute injury depends on the activation of each of these signaling pathways to induce expression of key blood genes. Both SMAD1 and TCF7L2 co-occupy sites with master regulators adjacent toĀ hematopoietic genes. In addition, both SMAD1 and TCF7L2 follow the binding of the predominant lineage regulator during differentiation from multipotent hematopoietic progenitor cells to erythroid cells. Furthermore, induction of the myeloid lineage regulator C/EBPĪ± in erythroid cells shifts binding of SMAD1 to sites newly occupied by C/EBPĪ±, whereas expression of the erythroid regulator GATA1 directs SMAD1 loss on nonerythroid targets. We conclude that the regenerative response mediated by BMP and Wnt signaling pathways is coupled with the lineage master regulators to control the gene programs defining cellular identity

    ā€˜Paying Attentionā€™ in a Digital Economy: Reflections on the Role of Analysis and Judgement Within Contemporary Discourses of Mindfulness and Comparisons with Classical Buddhist Accounts of Sati

    Get PDF
    This chapter examines the question of the role of intellectual analysis and ethical judgement in ancient Indian Buddhist accounts of sati and contemporary discourses about ā€˜mindfulnessā€™. Attention is paid to the role of paƱƱ? (Sanskrit: prajƱ?: ā€˜wisdomā€™ or ā€˜analytical insightā€™) and ethical reflection in the cultivation of sati in mainstream Abhidharma and early Mah?y?na philosophical discussions in India, noting the existence of a subordinate strand of Buddhist thought which focuses upon the non-conceptuality of final awakening (bodhi) and the quiescence of mind. Modern discourses of mindfulness are examined in relation to detraditionalization, the global spread of capitalism and widespread adoption of new information technologies. It is argued that analysis of the exponential growth in popularity of ā€˜mindfulnessā€™ techniques must be linked to an exploration of the modern history of attention, more specifically, the possibility that the use of fast-paced, digital, multimedia technologies is facilitating a demand for fragmented or dispersed attention. It is argued that the fault line between divergent contemporary accounts of mindfulness can be seen most clearly over the issue of the role of ethical judgements and mental ratiocination within mindfulness practice. The two most extreme versions on this spectrum see mindfulness on the one hand as a secular mental technology for calming the mind and reducing stress and discomfort, and on the other as a deeply ethical and experiential realization of the geopolitics of human experience. These, it is suggested, constitute an emerging discursive split in accounts of mindfulness reflective of divergent responses to the social, economic, political and technological changes occurring in relation to the global spread of neoliberal forms of capitalism

    BioSentinel: Monitoring DNA Damage Repair Beyond Low Earth Orbit on a 6U Nanosatellite

    Get PDF
    We are designing and developing a 6U nanosatellite as a secondary payload to fly aboard NASAs Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinels 12- to 18-month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. This data will be available for validation of existing models and for extrapolation to humans.The BioSentinel experiment will use the organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. The flight strain will include engineered genetic defects that prevent growth and division until a radiation-induced DSB activates the yeasts DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its repair. The yeast will be carried in the dry state in independent microwells with support electronics. The measurement subsystem will sequentially activate and monitor wells, optically tracking cell growth and metabolism. BioSentinel will also include TimePix radiation sensors implemented by JSCs RadWorks group. Dose and Linear Energy Transfer (LET) data will be compared directly to the rate of DSB-and-repair events measured by the S. cerevisiae biosentinels. BioSentinel will mature nanosatellite technologies to include: deep space communications and navigation, autonomous attitude control and momentum management, and micropropulsion systems to provide an adaptable nanosatellite platform for deep space uses

    Marketing Actions and the Value of Customer Assets: A Framework for Customer Asset Management

    Get PDF
    This article develops a framework for assessing how marketing actions affect customersā€™lifetime value to the firm. The framework is organized around four critical actions that firms must take to effectively manage the asset value of the customer base: database creation, market segmentation, forecasting customer purchase behavior, and resource allocation. In this framework, customer lifetime value is treated as a dynamic construct, that is, it influences the eventual allocation of marketing resources but is also influenced by that allocation. By viewing customers as assets and systematically managing these assets, a firm can identify the most appropriate marketing actions to acquire, maintain, and enhance customer assets and thereby maximize financial returns. The article discusses in detail how to assess customer lifetime value and manage customers as assets. Then, it identifies key research challenges in studying customer asset management and the managerial challenges associated with implementing effective customer asset management practices.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Quantitative Factors Proposed to Influence the Prevalence of Canine Tick-Borne Disease Agents in the United States

    Get PDF
    The Companion Animal Parasite Council hosted a meeting to identify quantifiable factors that can influence the prevalence of tick-borne disease agents among dogs in North America. This report summarizes the approach used and the factors identified for further analysis with mathematical models of canine exposure to tick-borne pathogens
    • ā€¦
    corecore