13 research outputs found
Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP
The conserved histone locus body (HLB) assembles prior to zygotic gene activation early during development and concentrates factors into a nuclear domain of coordinated histone gene regulation. Although HLBs form specifically at replication-dependent histone loci, the cis and trans factors that target HLB components to histone genes remained unknown. Here we report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct HLB formation in Drosophila. In addition, the CLAMP (chromatin-linked adaptor for male-specific lethal [MSL] proteins) zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. We demonstrated previously that CLAMP also promotes the formation of another domain of coordinated gene regulation: the dosage-compensated male X chromosome. Therefore, CLAMP binding to GA repeat motifs promotes the formation of two distinct domains of coordinated gene activation located at different places in the genome
The Gallery 2007
This is a digital copy of the print book produced by the Gallery 2007 team. Contents: p. 4 Introduction, p. 6 Photography, p. 14 Illustration, p. 28 Graphic Design, p. 44 Painting, p. 50 Three Dimensional, p. 62 Printmaking, p. 82 Autographs, p. 84 Index.
Files for individual sections may be viewed on the detailed metadata page by clicking on the book title.https://rdw.rowan.edu/the_gallery/1008/thumbnail.jp
Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Recommended from our members
Trans women have worse cardiovascular biomarker profiles than cisgender men independent of hormone use and HIV serostatus.
BACKGROUND: Feminizing hormonal therapy (FHT) and HIV potentially alter cardiovascular disease (CVD) risk in transgender women (TW). METHODS: TW were enrolled in Los Angeles, California and Houston, Texas and frequency-matched to Multicenter AIDS Cohort Study cisgender men (CM) on age, race, substance use, and abacavir use. Biomarkers of CVD risk and inflammation were assessed via ELISA. Wilcoxon rank sum and Fishers exact tests compared TW and CM. Multivariable linear regression assessed factors associated with biomarker concentrations. RESULTS: TW (HIV+ n  = 75, HIV- n  = 47) and CM (HIV+ n  = 40, HIV- n  = 40) had mean age 43-45 years; TW/CM were 90%/91% non-Hispanic Black, Hispanic, or Multiracial, 26%/53% obese, and 34%/24% current smokers; 67% of TW were on FHT. Among people with HIV (PWH), TW had higher median extracellular newly-identified receptor for advanced glycation end-products (EN-RAGE), lipoprotein-associated phospholipase A2 (LpPLA2), oxidized low-density lipoprotein (oxLDL), soluble tumor necrosis factor receptor type (sTNFR) I/II, interleukin (IL)-8 and plasminogen activator inhibitor (PAI)-1, but lower soluble CD14, von Willebrand factor (vWF) and endothelin (ET)-1 levels than CM. Findings were similar for participants without HIV (all P  < 0.05). In multivariable analysis, TW had higher EN-RAGE, IL-6, IL-8, P selectin, PAI-1, oxLDL and sTNFRI/II concentrations, and lower vWF, independent of HIV serostatus and current FHT use. Both being a TW and a PWH were associated with lower ET-1. CONCLUSIONS: Compared to matched cisgender men, trans women have altered profiles of biomarkers associated with systemic inflammation and CVD. Further work is needed to decipher the contributions of FHT to CVD risk in TW with HIV
Recommended from our members
Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists
Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists