380 research outputs found

    On the statistical machinery of alien species

    Full text link
    Many species of plants are found in regions to which they are alien and their global distribution has been found to exhibit several remarkable patterns,characterised by exponential functions of the kind that could arise through versions of MacArthur's broken stick. We show here that these various patterns are all quantitatively reproduced by a simple algorithm, in terms of a single parameter- a single stick to be broken. This algorithm admits a biological interpretation in terms of niche structures fluctuating with time and productivity; with sites and species highly idiosyncratic. Technically, this is an application of statistical mechanics to ecology quite different from the familiar application to species abundance distributions.Comment: 14 pages, 3 figures. Follows and strengthens arXiv:1004.2271 . Version 2 has 16 pages and 3 figures. It differs from the original version in a revised and extended discussion of the biological aspects and a small change in a parameter to improve agreement with dat

    Jet velocity in SS433: its anti-correlation with precession-cone angle and dependence on orbital phase

    Full text link
    We present a re-analysis of the optical spectroscopic data on SS433 from the last quarter-century and demonstrate that these data alone contain systematic and identifiable deviations from the traditional kinematic model for the jets: variations in speed, which agree with our analysis of recent radio data; in precession-cone angle and in phase. We present a simple technique for separating out the jet speed from the angular properties of the jet axis, assuming only that the jets are symmetric. With this technique, the archival optical data reveal that the variations in jet speed and in precession-cone angle are anti-correlated in the sense that when faster jet bolides are ejected the cone opening angle is smaller. We also find speed oscillations as a function of orbital phase.Comment: accepted by ApJ Letter

    Maximal variance reduction for stochastic propagators with applications to the static quark spectrum

    Get PDF
    We study a new method -- maximal variance reduction -- for reducing the variance of stochastic estimators for quark propagators. We find that while this method is comparable to usual iterative inversion for light-light mesons, a considerable improvement is achieved for systems containing at least one infinitely heavy quark. Such systems are needed for heavy quark effective theory. As an illustration of the effectiveness of the method we present results for the masses of the ground state and excited states of Qˉq\bar{Q}q mesons and Qˉqq\bar{Q}qq baryons. We compare these results with the experimental spectra involving bb quarks.Comment: 31 pages with 7 postscript file

    Mixing of scalar glueballs and flavour-singlet scalar mesons

    Get PDF
    We discuss in detail the extraction of hadronic mixing strengths from lattice studies. We apply this to the mixing of a scalar glueball and a scalar meson in the quenched approximation. We also measure correlations appropriate for flavour-singlet scalar mesons using dynamical quark configurations from UKQCD. This enables us to compare the results from the quenched study of the mixing with the direct determination of the mixed spectrum. Improved methods of evaluating the disconnected quark diagrams are also presented.Comment: 23 pages, 5 postscript figure

    The Hyperfine Splitting in Charmonium: Lattice Computations Using the Wilson and Clover Fermion Actions

    Full text link
    We compute the hyperfine splitting mJ/ψmηcm_{J/\psi}-m_{\eta_c} on the lattice, using both the Wilson and O(a)O(a)-improved (clover) actions for quenched quarks. The computations are performed on a 243×4824^3\times48 lattice at β=6.2\beta = 6.2, using the same set of 18 gluon configurations for both fermion actions. We find that the splitting is 1.83\err{13}{15} times larger with the clover action than with the Wilson action, demonstrating the sensitivity of the spin-splitting to the magnetic moment term which is present in the clover action. However, even with the clover action the result is less than half of the physical mass-splitting. We also compute the decay constants fηcf_{\eta_c} and fJ/ψ1f^{-1}_{J/\psi}, both of which are considerably larger when computed using the clover action than with the Wilson action. For example for the ratio fJ/ψ1/fρ1f^{-1}_{J/\psi}/f^{-1}_{\rho} we find 0.32\err{1}{2} with the Wilson action and 0.48±30.48\pm 3 with the clover action (the physical value is 0.44(2)).Comment: LaTeX file, 8 pages and two postscript figures. Southampton Preprint: SHEP 91/92-27 Edinburgh Preprint: 92/51

    Symmetry in the changing jets of SS433 and its true distance from us

    Full text link
    We present the deepest yet radio image of the Galactic jet source, SS433, which reveals over two full precession cycles (> 2 x 163 days) of the jet axis. Systematic and identifiable deviations from the traditional kinematical model for the jets are found: variations in jet speed, lasting for as long as tens of days, are necessary to match the detailed structure of each jet. It is remarkable that these variations are equal and opposite, matching the two jets simultaneously. This explains certain features of the correlated redshift residuals found in fits to the kinematic model of SS433 reported in the literature. Asymmetries in the image caused by light travel time enabled us to measure the jet speeds of particular points to be within a range from 0.24c to 0.28c, consistent with, yet determined independently from, the speeds derived from the famous moving optical emission lines. Taken together with the angular periodicity of the zigzag/corkscrew structure projected on the plane of the sky (produced by the precession of the jet axis), these measurements determine beyond all reasonable doubt the distance to SS433 to be 5.5 +/- 0.2 kpc, significantly different from the distance most recently inferred using neutral hydrogen measurements together with the current rotation model for the Galaxy.Comment: accepted by ApJ Letter

    Quenched Hadrons using Wilson and O(a)-Improved Fermion Actions at beta=6.2

    Full text link
    We present the first study of the light hadron spectrum and decay constants for quenched QCD using an O(a)-improved nearest-neighbour Wilson fermion action at \beta=6.2. We compare the results with those obtained using the standard Wilson fermion action, on the same set of 18 gauge field configurations of a 24^3 times 48 lattice. For pseudoscalar meson masses in the range 330-800 MeV, we find no significant difference between the results for the two actions. The scales obtained from the string tension and mesonic sector are consistent, but differ from that derived from baryon masses. The ratio of the pseudoscalar decay constant to the vector meson mass is roughly independent of quark mass as observed experimentally, and in approximate agreement with the measured value.Comment: 11 page
    corecore