476 research outputs found
Acute Ethanol Administration Rapidly Increases Phosphorylation of Conventional Protein Kinase C in Specific Mammalian Brain Regions in Vivo
Background
Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity.
Methods
Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods.
Results
Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKC? immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection
Epistatic Interactions Alter Dynamics of Multilocus Gene-for-Gene Coevolution
Fitness costs associated with resistance or virulence genes are thought to play a key role in determining the dynamics of gene-for-gene (GFG) host-parasite coevolution. However, the nature of interactions between fitness effects of multiple resistance or virulence genes (epistasis) has received less attention. To examine effects of the functional form of epistasis on the dynamics of GFG host-parasite coevolution we modified a classic multilocus GFG model framework. We show that the type of epistasis between virulence genes largely determines coevolutionary dynamics, and that coevolutionary fluctuations are more likely with acceleratingly costly (negative) than with linear or deceleratingly costly (positive) epistasis. Our results demonstrate that the specific forms of interaction between multiple resistance or virulence genes are a crucial determinant of host-parasite coevolutionary dynamics
Introducing EMMIE: An evidence rating scale to encourage mixed-method crime prevention synthesis reviews
Objectives This short report describes the need for, and the development of, a coding system to distil the quality and coverage of systematic reviews of the evidence relating to crime prevention interventions. The starting point for the coding system concerns the evidence needs of policymakers and practitioners. Methods The coding scheme (EMMIE) proposed builds on previous scales that have been developed to assess the probity, coverage and utility of evidence both in health and criminal justice. It also draws on the principles of realist synthesis and review. Results The proposed EMMIE scale identifies five dimensions to which systematic reviews intended to inform crime prevention should speak. These are the Effect of intervention, the identification of the causal Mechanism(s) through which interventions are intended to work, the factors that Moderate their impact, the articulation of practical Implementation issues, and the Economic costs of intervention
Methylating mushrooms
Peptide N-methylation is an important strategy used by medicinal chemists to improve cell permeability, oral bioavailability, and target affinity of peptide-based inhibitors. Correspondingly, N-methyl amides appear extensively in bioactive natural products. In the case of the immunosuppressant cyclosporine, for example, specific N-methylation of seven out of ten backbone amide nitrogens in the cyclic decapeptide is thought to allow a conformational ‘shapeshifting’ that hides polar N–H moieties and facilitates passive diffusion across cell membranes. Until now, N-methylation has primarily been the mark of peptide natural products from complex nonribosomal peptide synthetase (NRPS) assembly lines, and has not previously been found among their cousins, the ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. In this issue, van der Velden et al. uncover the biosynthetic origins of the omphalotins, peptide natural products from the bioluminescent fungus O. olearius (Fig. 1a), and bring peptide backbone N-methylation into the realm of peptide post-translational modifications
Roadmap of optical communications
© 2016 IOP Publishing Ltd. Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications
Pneumonia care and the nursing home: a qualitative descriptive study of resident and family member perspectives
BACKGROUND: Nursing home residents are frequently sent to hospital for diagnostic tests or to receive acute health care services. These transfers are both costly and for some, associated with increased risks. Although improved technology allows long-term care facilities to deliver more complex health care on site, if this is to become a trend then residents and family members must see the value of such care. This qualitative study examined resident and family member perspectives on in situ care for pneumonia. METHODS: A qualitative descriptive study design was used. Participants were residents and family members of residents treated for pneumonia drawn from a larger randomized controlled trial of a clinical pathway to manage nursing home-acquired pneumonia on-site. A total of 14 in-depth interviews were conducted. Interview data were analyzed using the editing style, described by Miller and Crabtree, to identify key themes. RESULTS: Both residents and family members preferred that pneumonia be treated in the nursing home, where possible. They both felt that caring and attention are key aspects of care which are more easily accessible in the nursing home setting. However, residents felt that staff or doctors should make the decision whether to hospitalize them, whereas family members wanted to be consulted or involved in the decision-making process. CONCLUSION: These findings suggest that interventions to reduce hospitalization of nursing home residents with pneumonia are consistent with resident and family member preferences
Donepezil and related cholinesterase inhibitors as mood and behavioral controlling agents.
Acetylcholinesterase inhibitors (ChEIs) enhance neuronal transmission by increasing the availability of acetylcholine in muscarinic and nicotinic receptors. This effect is believed to be responsible for the beneficial and protective effects of ChEIs on cognition in patients with Alzheimer's disease (AD). Effects of ChEIs on mood and behavior have also been reported. Earlier observations were limited by the exclusive availability of intravenous forms of administration, the short half-life of the formulations, and the high frequency of peripheral side effects. The introduction, in recent years, of better tolerated and less invasive compounds has rekindled the interest in cholinergic central nervous system mechanisms and has given rise to studies in areas other than cognition. The ChEI donepezil has been involved in the largest number of studies and positive reports. Preliminary observations suggest the possible value of ChEIs in the management of behavioral dysregulation, apathy, irritability, psychosis, depression, mania, tics, and delirium and in the diagnosis of depression, panic, and personality disorders
Plant Community Diversity Influences Allocation to Direct Chemical Defence in Plantago lanceolata
Background: Forecasting the consequences of accelerating rates of changes in biodiversity for ecosystem functioning requires a mechanistic understanding of the relationships between the structure of biological communities and variation in plant functional characteristics. So far, experimental data of how plant species diversity influences the investment of individual plants in direct chemical defences against herbivores and pathogens is lacking. Methodology/Principal Findings: We used Plantago lanceolata as a model species in experimental grasslands differing in species richness and composition (Jena Experiment) to investigate foliar concentrations of the iridoid glycosides (IG), catalpol and its biosynthetic precursor aucubin. Total IG and aucubin concentrations decreased, while catalpol concentrations increased with increasing plant diversity in terms of species or functional group richness. Negative plant diversity effects on total IG and aucubin concentrations correlated with increasing specific leaf area of P. lanceolata, suggesting that greater allocation to light acquisition reduced the investment into these carbon-based defence components. In contrast, increasing leaf nitrogen concentrations best explained increasing concentrations of the biosynthetically more advanced IG, catalpol. Observed levels of leaf damage explained a significant proportion of variation in total IG and aucubin concentrations, but did not account for variance in catalpol concentrations. Conclusions/Significance: Our results clearly show that plants growing in communities of varying species richness an
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
- …