93 research outputs found

    Reducing the burden of obesity-associated cancers with anti-inflammatory long-chain omega-3 polyunsaturated fatty acids

    Get PDF
    Todayā€™s world population has an unprecedented risk of dying from the consequences of being overweight and obese. Chronic diseases such as cardiovascular disease, type 2 diabetes, and cancer are often accelerated because of excessive adiposity. Various biological mechanisms are implicated in the obesity-cancer link, particularly local and systemic inflammation as well as altered growth factor signaling pathways. In order to combat obesity-induced inflammation and the resulting increases in cancer risk and progression, the identification of safe and effective mechanism-based interventions is imperative. Notably, long chain omega-3 polyunsaturated fatty acids (PUFAs) modulate the secretion of pro-inflammatory cytokines, prostaglandins and other inflammatory mediators, restore insulin sensitivity, and can prevent or delay tumorigenesis. Delineating the precise mechanisms by which omega-3 PUFAs suppress obesity-induced inflammation will help identify promising key mechanistic targets and intervention strategies to break the obesity-cancer link

    Abstract P4-04-16: Obesity-associated systemic interleukin-6 promotes pre-adipocyte aromatase expression via increased breast cancer cell prostaglandin E2 production

    Get PDF
    Obesity is associated with a worse breast cancer prognosis, particularly in estrogen receptor alpha (ERĪ±) positive, postmenopausal patients. We hypothesized that this is mediated in part by an elevation in breast cancer cell cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production that results in greater local pre-adipocyte aromatase expression. We utilized an in vitro model of the obese patient's tumor microenvironment in which cultured MCF-7 breast cancer cells and pre-adipocytes were exposed to pooled serum from obese (OB; BMI ā‰„ 30.0 kg/m2) or normal weight (N; BMI 18.5ā€“24.9 kg/m2) postmenopausal women. Exposure to OB versus N sera significantly increased MCF-7 cell COX-2 expression and PGE2 production. Pre-adipocyte aromatase expression was 89 % greater following culture in conditioned media (CM) from MCF-7 cells exposed to OB versus N sera (OB-CM and N-CM, respectively), a difference nullified by MCF-7 cell treatment with the COX-2 inhibitor celecoxib. Previous analysis of the sera revealed significantly higher interleukin-6 (IL-6) concentrations in the OB versus N samples. Depletion of IL-6 from the sera neutralized the difference in pre-adipocyte aromatase expression stimulated by OB-CM versus N-CM. Finally, CM from pre-adipocyte/MCF-7 cell co-cultures exposed to OB sera stimulated greater MCF-7 and T47D breast cancer cell ERĪ± activity and proliferation in comparison to N sera. This study indicates that obesity-associated systemic IL-6 indirectly enhances pre-adipocyte aromatase expression via increased breast cancer cell PGE2 production. Investigation regarding the efficacy of a COX-2 inhibitor/aromatase inhibitor combination therapy in the obese postmenopausal patient population is warranted

    The Role of the Insulin/IGF System in Cancer: Lessons Learned from Clinical Trials and the Energy Balance-Cancer Link

    Get PDF
    Numerous epidemiological and pre-clinical studies have demonstrated that the insulin/insulin-like growth factor (IGF) system plays a key role in the development and progression of several types of cancer. Insulin/IGF signaling, in cooperation with chronic low-grade inflammation, is also an important contributor to the cancer-promoting effects of obesity. However, clinical trials for drugs targeting different components of this system have produced largely disappointing results, possibly due to the lack of predictive biomarker use and problems with the design of combination therapy regimens. With careful attention to the identification of likely patient responders and optimal drug combinations, the outcome of future trials may be improved. Given that insulin/IGF signaling is known to contribute to obesity-associated cancer, further investigation regarding the efficacy of drugs targeting this system and its downstream effectors in the obese patient population is warranted

    Complementary Metagenomic Approaches Improve Reconstruction of Microbial Diversity in a Forest Soil

    Get PDF
    Soil ecosystems harbor diverse microorganisms and yet remain only partially characterized as neither single-cell sequencing nor whole-community sequencing offers a complete picture of these complex communities. Thus, the genetic and metabolic potential of this ā€œuncultivated majorityā€ remains underexplored. To address these challenges, we applied a pooled-cell-sorting-based mini-metagenomics approach and compared the results to bulk metagenomics. Informatic binning of these data produced 200 mini-metagenome assembled genomes (sorted-MAGs) and 29 bulk metagenome assembled genomes (MAGs). The sorted and bulk MAGs increased the known phylogenetic diversity of soil taxa by 7.2% with respect to the Joint Genome Institute IMG/M database and showed clade-specific sequence recruitment patterns across diverse terrestrial soil metagenomes. Additionally, sorted-MAGs expanded the rare biosphere not captured through MAGs from bulk sequences, exemplified through phylogenetic and functional analyses of members of the phylum Bacteroidetes. Analysis of 67 Bacteroidetes sorted-MAGs showed conserved patterns of carbon metabolism across four clades. These results indicate that mini-metagenomics enables genome-resolved investigation of predicted metabolism and demonstrates the utility of combining metagenomics methods to tap into the diversity of heterogeneous microbial assemblages. IMPORTANCE Microbial ecologists have historically used cultivation-based approaches as well as amplicon sequencing and shotgun metagenomics to characterize microbial diversity in soil. However, challenges persist in the study of microbial diversity, including the recalcitrance of the majority of microorganisms to laboratory cultivation and limited sequence assembly from highly complex samples. The uncultivated majority thus remains a reservoir of untapped genetic diversity. To address some of the challenges associated with bulk metagenomics as well as low throughput of single-cell genomics, we applied flow cytometry-enabled mini-metagenomics to capture expanded microbial diversity from forest soil and compare it to soil bulk metagenomics. Our resulting data from this pooled-cell sorting approach combined with bulk metagenomics revealed increased phylogenetic diversity through novel soil taxa and rare biosphere members. In-depth analysis of genomes within the highly represented Bacteroidetes phylum provided insights into conserved and clade-specific patterns of carbon metabolism

    Obesity-Associated Alterations in Inflammation, Epigenetics, and Mammary Tumor Growth Persist in Formerly Obese Mice

    Get PDF
    Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable to control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL-6 levels, expression of pro-inflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice, and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus non-obese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression

    Obesity Suppresses Estrogen Receptor Beta Expression in Breast Cancer Cells via a HER2-Mediated Pathway

    Get PDF
    Obesity is associated with a worse breast cancer prognosis, while greater breast tumor estrogen receptor beta (ERĪ²) expression is correlated with improved therapy response and survival. The objective of this study was to determine the impact of obesity on breast cancer cell ERĪ² expression, which is currently unknown. We utilized an in vitro model of obesity in which breast cancer cells were exposed to patient serum pooled by body mass index category (obese (OB): ā‰„30 kg/m2; normal weight (N): 18.5ā€“24.9 kg/m2). Four human mammary tumor cell lines representing the major breast cancer subtypes (SKBR3, MCF-7, ZR75, MDA-MB-231) and mammary tumor cells from MMTV-neu mice were used. ERĪ² expression, assessed by qPCR and western blotting, was suppressed in the two HER2-overexpressing cell lines (SKBR3, MMTV-neu) following OB versus N sera exposure, but did not vary in the other cell lines. Expression of Bcl-2 and cyclin D1, two genes negatively regulated by ERĪ², was elevated in SKBR3 cells following exposure to OB versus N sera, but this difference was eliminated when the ERĪ² gene was silenced with siRNA. Herceptin, a HER2 antagonist, and siRNA to HER2 were used to evaluate the role of HER2 in sera-induced ERĪ² modulation. SKBR3 cell treatment with OB sera plus Herceptin increased ERĪ² expression three-fold. Similar results were obtained when HER2 expression was silenced with siRNA. OB sera also promoted greater SKBR3 cell viability and growth, but this variance was not present when ERĪ² was silenced or the cells were modified to overexpress ERĪ². Based on this data, we conclude that obesity-associated systemic factors suppress ERĪ² expression in breast cancer cells via a HER2-mediated pathway, leading to greater cell viability and growth. Elucidation of the mechanism(s) mediating this effect could provide important insights into how ERĪ² expression is regulated as well as how obesity promotes a more aggressive disease

    The Lantern Vol. 63, No. 2, Spring 1996

    Get PDF
    ā€¢ Poet, Lead Me On ā€¢ St. Patrick\u27s Day ā€¢ The Last Three Days ā€¢ The Impressionable ā€¢ Roundabout ā€¢ The Bench ā€¢ Carnivorous ā€¢ Kyrie ā€¢ Second Glance ā€¢ Porch ā€¢ Cruel Design ā€¢ A Mime ā€¢ Flaxen Crown ā€¢ My Embryonic Ocean of Love ā€¢ Stone Matrix ā€¢ Voices from the Past ā€¢ Skipping the Bullfight: Toreadors and Gaudi ā€¢ Another Part of My Lacolonialism ā€¢ Translucent Pane ā€¢ Linguistics ā€¢ Treehouse ā€¢ A Disagreeable Music Piece ā€¢ Vigil ā€¢ A Brief History of American Poetry in Englishhttps://digitalcommons.ursinus.edu/lantern/1148/thumbnail.jp

    Energy Balance Modulation Impacts Epigenetic Reprogramming, ERĪ± and ERĪ² Expression, and Mammary Tumor Development in MMTV-neu Transgenic Mice

    Get PDF
    The association between obesity and breast cancer risk and prognosis is well established in ER-positive disease but less clear in HER2-positive disease. Here, we report preclinical evidence suggesting weight maintenance through calorie restriction may limit risk of HER2-positive breast cancer. In female MMTV-HER2/neu transgenic mice, we found that ERĪ± and ERĪ² expression, mammary tumorigenesis and survival are energy balance-dependent in association with epigenetic reprogramming. Mice were randomized to receive a calorie restriction (CR), overweight (OW)-inducing, or diet-induced obesity (DIO) regimen (n = 27/group). Subsets of mice (n = 4/group/time point) were euthanized after 1, 3 and 5 months to characterize diet-dependent metabolic, transcriptional, and epigenetic perturbations. Remaining mice were followed up to 22 months. Relative to the OW and DIO regimens, CR decreased body weight, adiposity, and serum metabolic hormones as expected, and also elicited an increase in mammary ERĪ± and ERĪ² expression. Increased DNA methylation accompanied this pattern, particularly at CpG dinucleotides located within binding or flanking regions for the transcriptional regulator CCCTC-binding factor (CTCF) of ESR1 and ESR2, consistent with sustained transcriptional activation of ERĪ± and ERĪ². Mammary expression of the DNA methylation enzyme DNMT1 was stable in CR mice but increased over time in OW and DIO mice, suggesting CR obviates epigenetic alterations concurrent with chronic excess energy intake. In the survival study, CR elicited a significant suppression in spontaneous mammary tumorigenesis. Overall, our findings suggest a mechanistic rationale to prevent or reverse excess body weight as a strategy to reduce HER2-positive breast cancer risk

    Omega-3-Acid Ethyl Esters Block the Protumorigenic Effects of Obesity in Mouse Models of Postmenopausal Basal-like and Claudin-Low Breast Cancer

    Get PDF
    Obesity induces chronic inflammation and is an established risk and progression factor for triple-negative breast cancers, including basal-like (BL) and claudin-low (CL) subtypes. We tested the effects of dietary supplementation with ethyl esters of the marine-derived anti-inflammatory omega-3 fatty acids eicosapentaenoic and docosahexaenoic acid (EPA+DHA; LovazaĀ®) on growth of murine BL and CL mammary tumors. Female ovariectomized C57BL/6 mice were fed a control diet or a diet-induced obesity (DIO) diet with or without EPA+DHA (0.025%, resulting in blood levels of EPA and DHA comparable to women taking Lovaza 4 g/day) for 6 weeks. All mice were then orthotopically injected with Wnt-1 cells (a BL tumor cell suspension derived from MMTV-Wnt-1 transgenic mouse mammary tumors) or M-Wnt cells (a CL tumor cell line cloned from the Wnt-1 tumor cell suspension). Mice were killed when tumors were 1 cm in diameter. EPA+DHA supplementation did not significantly impact Wnt-1 or M-Wnt mammary tumor growth in normoweight control mice. However, EPA+DHA supplementation in DIO mice reduced growth of Wnt-1 and M-Wnt tumors; reduced leptin:adiponectin ratio and pro-inflammatory eicosanoids in the serum; improved insulin sensitivity; and decreased tumoral expression of cyclooxygenase-2 and phospho-p65. Thus, EPA+DHA supplementation in mouse models of postmenopausal BL and CL breast cancer offsets many of the pro-tumorigenic effects of obesity. These preclinical findings, in combination with results from parallel biomarker studies in women, suggest EPA+DHA supplementation may reduce the burden of BL and CL breast cancer in obese women

    Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma

    Full text link
    PURPOSE We sought to investigate clinical outcomes of relapsed medulloblastoma and to compare molecular features between patient-matched diagnostic and relapsed tumors. METHODS Children and infants enrolled on either SJMB03 (NCT00085202) or SJYC07 (NCT00602667) trials who experienced medulloblastoma relapse were analyzed for clinical outcomes, including anatomic and temporal patterns of relapse and postrelapse survival. A largely independent, paired molecular cohort was analyzed by DNA methylation array and next-generation sequencing. RESULTS A total of 72 of 329 (22%) SJMB03 and 52 of 79 (66%) SJYC07 patients experienced relapse with significant representation of Group 3 and wingless tumors. Although most patients exhibited some distal disease (79%), 38% of patients with sonic hedgehog tumors experienced isolated local relapse. Time to relapse and postrelapse survival varied by molecular subgroup with longer latencies for patients with Group 4 tumors. Postrelapse radiation therapy among previously nonirradiated SJYC07 patients was associated with long-term survival. Reirradiation was only temporizing for SJMB03 patients. Among 127 patients with patient-matched tumor pairs, 9 (7%) experienced subsequent nonmedulloblastoma CNS malignancies. Subgroup (96%) and subtype (80%) stabilities were largely maintained among the remainder. Rare subgroup divergence was observed from Group 4 to Group 3 tumors, which is coincident with genetic alterations involving MYC, MYCN, and FBXW7. Subgroup-specific patterns of alteration were identified for driver genes and chromosome arms. CONCLUSION Clinical behavior of relapsed medulloblastoma must be contextualized in terms of up-front therapies and molecular classifications. Group 4 tumors exhibit slower biological progression. Utility of radiation at relapse is dependent on patient age and prior treatments. Degree and patterns of molecular conservation at relapse vary by subgroup. Relapse tissue enables verification of molecular targets and identification of occult secondary malignancies
    • ā€¦
    corecore