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ABSTRACT

The association between obesity and breast cancer risk and prognosis is well
established in ER-positive disease but less clear in HER2-positive disease. Here,
we report preclinical evidence suggesting weight maintenance through calorie
restriction may limit risk of HER2-positive breast cancer. In female MMTV-
HER2/neu transgenic mice, we found that ERa and ER expression, mammary
tumorigenesis and survival are energy balance-dependent in association with
epigenetic reprogramming. Mice were randomized to receive a calorie restriction
(CR), overweight (OW)-inducing, or diet-induced obesity (DIO) regimen (n =
27/group). Subsets of mice (n = 4/group/time point) were euthanized after 1, 3
and 5 months to characterize diet-dependent metabolic, transcriptional, and
epigenetic perturbations. Remaining mice were followed up to 22 months.
Relative to the OW and DIO regimens, CR decreased body weight, adiposity,
and serum metabolic hormones as expected, and also elicited an increase in
mammary ERa and ER expression. Increased DNA methylation accompanied
this pattern, particularly at CpG dinucleotides located within binding or flanking
regions for the transcriptional regulator CCCTC-binding factor (CTCF) of ESR1
and ESR2, consistent with sustained transcriptional activation of ERa and ER}.
Mammary expression of the DNA methylation enzyme DNMT1 was stable in CR
mice but increased over time in OW and DIO mice, suggesting CR obviates
epigenetic alterations concurrent with chronic excess energy intake. In the
survival study, CR elicited a significant suppression in spontaneous mammary

tumorigenesis. Overall, our findings suggest a mechanistic rationale to prevent or
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99 reverse excess body weight as a strategy to reduce HER2-positive breast cancer
100  risk.
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INTRODUCTION

Breast cancer is the most frequently diagnosed noncutaneous neoplasm
among women in the United States and is the leading cause of cancer death
among women worldwide (1,2). Approximately 30% of all breast cancers lack
estrogen receptor alpha (ERa), which confers a worse prognosis in comparison
to ERa-positive breast tumors (3). Furthermore, the expression of estrogen
receptor beta (ERB), a putative tumor suppressor, is also lost in most ERa-
negative breast tumors (4). ERp is the more prevalent ER in normal mammary
tissue, but its expression is reduced during tumor formation. Numerous studies
have linked greater breast tumor ER[3 expression with an improved prognosis (5,
6). However, the degree to which ERa and ER[ expression is impacted by
dietary energy balance and/or controlled epigenetically in breast tumorigenesis
remains unclear.

Obesity, a result of chronic positive dietary energy balance, is an
established risk factor for postmenopausal breast cancer and may also enhance
risk in premenopausal women with additional breast cancer risk factors, including
type 2 diabetes (7, 8). In addition, excess energy intake and increased adiposity
have been associated with greater breast tumor size, increased progression
markers, and therapy resistance in both pre- and postmenopausal women (9-11).
In contrast, the maintenance of a negative energy balance via calorie restriction
(CR) prevents weight gain and inhibits the development of several types of
cancer, including ER-positive and ER-negative breast cancers, in numerous

animal models (12, 13). CR also has been associated with changes in several
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serum and tissue biomarkers in women causally linked with reduced breast
cancer risk (14, 15).

Although links between energy metabolism, epigenetic regulation of gene
expression, and several chronic diseases have been previously established, the
relationship between dietary energy balance, epigenetics and breast cancer is
poorly understood (16, 17). DNA methylation levels are regulated in part by DNA
(cytosine-5)-methyltransferase 1 (DNMT1), which predominantly serves to
maintain genomic DNA methylation during DNA replication (17). Thus, during
times of high cell proliferation such as during development, DNMT1 is highly
expressed. However, DNMT1 can become deregulated throughout the life course
in response to metabolic, inflammatory and environmental disturbances, and this
dysregulation has been linked with aberrant DNA methylation and cancer (16,
18-20).

The effects of DNA methylation are dependent upon the location of methyl
groups in the genomic landscape. In general, promoter methylation results in
transcriptionally silent genes. However, methylation in the transcription region of
genes is often positively correlated with gene expression (21, 22). In addition,
methylation that prevents a repressor from binding DNA can correspond to
increased gene expression (23). CCCTC-binding factor (CTCF) is an 11-zinc
finger protein and highly conserved transcription factor with enhancer-blocking
activity (24). DNA methylation at CpG (5’-C-phosphate-G-3’) dinucleotides is
inversely correlated with CTCF occupancy (23, 25). We posit that the diet-

methylation-CTCF axis may serve as a critical sensory system that regulates
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gene transcription via energy balance-associated changes in DNA methylation at
or near CTCF binding sites.

The genetically engineered Mouse Mammary Tumor Virus (MMTV)-neu
mouse model is characterized by mammary gland overexpression of the
oncogene human epidermal growth factor receptor (HER2). MMTV-neu mice
initially have histologically normal, ERa-positive mammary glands that
subsequently develop regions of ductal carcinoma in situ with ERa expression
lost in most cells. If untreated, these mice ultimately develop ERa-negative,
HER2-positive mammary adenocarcinomas before 24 months of age (26). In the
present study, we tested the hypothesis that dietary energy balance modulation
alters ERa and/or ERf expression, DNA methylation and tumor incidence in

female MMTV-neu mice.

MATERIALS AND METHODS
In vivo studies in MMTV-neu transgenic mice

All animal studies and procedures were approved and monitored by the
University of Texas Institutional Animal Care and Use Committee. Female 6- to
8-week-old MMTV-neu mice (JAX stock #002376, n = 86) were purchased from
Jackson Laboratory (Bar Harbor, ME, USA) and fed a modified AIN-93G
semipurified diet, defined as the overweight (OW)-inducing diet for this study
(catalog #D12450B, Research Diets, Inc., New Brunswick, NJ, USA) ad libitum

for 1 week of acclimation.
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Baseline mice: Following acclimation, a subset of mice (n = 5) were fasted for

6 hours and then euthanized by CO, asphyxiation followed by cervical dislocation.
Blood was collected by cardiac puncture, allowed to coagulate for 30 minutes at
room temperature, and centrifuged at 10,000 x g for 5 minutes; serum was
removed and stored at -80°C for subsequent analyses. Mammary tissues were

collected for further molecular and pathological analysis.

Time point study: A subset of 36 mice were singly housed and randomized

(n = 12/diet group) to one of the following three diet treatment groups (each
modified from the OW diet, which is AIN-93G semipurified diet formulation) for a
5-month time point study: 1) calorie restriction regimen (CR), a low-fat, low-
carbohydrate diet (#D0302702); 2) OW diet, a high-carbohydrate, low-fat diet
providing 3.8 kcal/g (#D12450B); or 3) diet-induced obesity regimen (DIO), a
high-carbohydrate, high-fat diet providing 5.2 kcal/g (#D12492), all from
Research Diets, Inc. CR mice were administered their diet formulation as daily
aliquots of food that provided 70% of the kcal but 100% of the vitamins, minerals,
essential fatty acids and amino acids relative to the OW group. Mice were
weighed weekly. After 1, 3 and 5 months on diet, mice were analyzed for
percent body fat using quantitative magnetic resonance spectroscopy (Echo
Medical Systems, Houston, TX, USA). At each of these same time points 4 mice
per diet group were killed, and serum and nontumor-bearing mammary tissue
were collected as described above. No tumors developed in any mice in the time

point study.
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Survival study: The remaining subset of 45 mice were singly housed and
randomized (n = 15/diet group) to the CR, OW or DIO diet regimens and were
followed for survival for up to 22 months. The survival curve for each diet group
illustrates time-to-event data, with the event consisting of either death or the
presence of a mammary tumor > 1.0 cm in any direction, the IACUC approved
maximal tumor size (27). Non-mammary tumor-related deaths were censored.
Mice were palpated for mammary tumors weekly. Once detected, tumor
diameters were measured in two dimensions twice weekly with electronic
calipers. When tumor diameter reached 1.0 cm in either dimension (or after 22
months of study in the absence of tumor), mice were killed. Tumor and/or distal
mammary tissue were collected and processed. One half of each collected tissue
sample was fixed in 10% neutral buffered formalin for 24 hours, transferred to
70% ethanol for at least 24 hours, embedded in paraffin, and cut into 4 ym thick
sections for hematoxylin and eosin (H&E) staining or immunohistochemical
analysis. The other half was placed in a cryotube, flash frozen in liquid nitrogen
and stored at -80°C for subsequent molecular analyses. Blood was collected by

cardiac puncture and serum was isolated for analysis.

Analyses of circulating energy balance-related hormones and 17B-estradiol
Serum samples from all 5 mice at baseline, and all 4 mice per diet group
at the 1-, 3- and 5-month time points were collected after mice were fasted to

reduce variability of metabolic hormones. Estrous cycle was not assessed.
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217  Serum samples were analyzed for leptin, insulin, insulin-like growth factor (IGF)-1,
218 and adiponectin by Luminex-based bead array assay (Millipore, Billerica, MA,

219 USA) read on MagPix multianalyte detection system (BioRad, Hercules, CA,

220 USA). The mean inter-assay coefficient of variation (C.V.) of multiplexed bead-
221 based assays for metabolic hormone detection has been shown to be <15% in
222  published studies (28). Serum 173-estradiol was measured by ELISA (Alpha

223  Diagnostics, San Antonio, TX, USA).

224

225 Real-time quantitative reverse transcription (QRT)-PCR analyses of ERa

226 and ERj

227 Total RNA was extracted using TRI-Reagent (Sigma-Aldrich, St. Louis,
228 MO, USA) according to manufacturer’s instructions from the flash-frozen

229 mammary tissue samples collected at baseline (n = 5 mice) and each of the 3
230 time points (n = 4 mice/diet group/time point). RNA was also extracted from
231 nontumor-bearing, flash-frozen mammary tissue collected from mice in the
232 survival study upon their termination (between 14 and 22 months). RNA

233  concentration was spectrophotometrically determined using a nanodrop (Thermo
234  Scientific, Logan, UT, USA), and quality was confirmed using an Agilent 2100
235 Bioanalyzer (Santa Clara, CA, USA). RNA was reverse transcribed with

236  Multiscribe RT (Applied Biosystems, Carlsbad, CA, USA) and resulting cDNA
237  were assayed in triplicate using Tagman® Gene Expression Assays for ERaq,
238 ERP and DNMT1 (Applied Biosystems). PCR reactions were monitored by a

239  ViiA™7 Real time PCR system (Applied Biosciences). Gene expression data
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were normalized to the housekeeping gene [-actin and analyzed using the delta

delta cycle threshold method.

Histopathologic and immunohistochemical analyses

Tumors were examined for histopathological markers of tumor progression,
including vascularity (presence of blood vessels) and proliferation (number of
mitotic figures per field) in H&E sections by a board-certified veterinary
pathologist. Vascularity was graded in a blinded fashion on a categorical score
for the entire slide (0 = no intratumoral blood vessels present, 1 = low number of
vessels present, 2 = medium number of vessels present, 3 = high number of
vessels present). Mitotic figures were counted in 5 non-overlapping fields of view,
and a mean number of mitotic figures was determined for each mouse. Values
from each mouse were used to calculate mean vascularity score and mitotic
figures for each diet group.

Immunohistochemical staining of mammary tissue was performed (n = 4
mice/diet group) using a primary antibody for ERa (Catalog #sc542, Santa Cruz
Biotechnology, Santa Cruz, CA, USA) at 1:500 and ERB (Abcam #3576,
Cambridge, MA, USA) at 1:100. The secondary antibody was horseradish
peroxidase-labeled anti-rabbit antibody (DAKO Cytomation, Carpinteria, CA,

USA).
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DNA methylation analysis

DNA was extracted from a random sample (n = 3/group) of mammary
tissues from baseline mice and CR and OW mice in the 5-month time point and
survival study using UltraPure™ phenol:chloroform:isoamyl alcohol per
manufacturer’s instructions (Life Technologies). Library preparation and
sequencing for baseline, CR and OW in the 5-month time point and survival
study were performed at UT MD Anderson Cancer Center’'s DNA Methylation
Analysis Core and Science Park Next-Generation Sequencing Facility, according
to published protocols as previously described (29) (Supplementary Table S1).
Samples from DIO mice were not analyzed given the cost of RRBS and the
similarities between OW and DIO mice in ERa and ERB mRNA and protein
expression. Gene promoter regions were calculated based on RefSeq gene
annotations with regions starting 1 kb upstream of the annotated transcription
start site (TSS) and extending 500 base pairs downstream of TSS. Differential
methylation was calculated by filtering samples based on read coverage = 20,
then performed at the single base level. Methylkit R package was used to apply
logistic regression and the likelihood ratio test. Observed p-values were adjusted
with the success likelihood index method (SLIM). CpG dinucleotides that
exhibited differential methylation patterns between CR and OW groups were
cross-referenced with annotated gene regulatory regions within and surrounding
ESR1 and ESR2 in Mus musculus outlined by Ensembl (30). To generate a heat
map, we identified CpG dinucleotides with significantly higher methylation in CR

survival vs. OW survival mice that also had percent methylated DNA values
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available for baseline and CR and OW mice at the 5-month time point.
Differentially methylated CpG dinucleotides were clustered using hierarchical
clustering with complete linkage and a Euclidian distance measure.
Corresponding dendrogram and heat maps for promoter, intron, exon and other
were produced using the heatmap.2 function from the gplots package in R

(version 3.3.1).

Differential expression analysis using RNA-seq and Ingenuity Pathway
Analysis (IPA)

RNA was extracted as described above. RNA libraries were prepared
using the lllumina TruSeq Stranded Total RNA Sample Preparation kit according
to manufactures instructions. The libraries were sequenced using a 2x76 bases
paired end protocol on the Illumina HiSeq 2000 instrument. The reads were
mapped to mouse genome (mm10) by TopHat (version 2.0.7) (31). The number
of fragments in each known gene from RefSeq database (32) (UCSC Genome
Browser 2013) was enumerated using HTSeg-count from HTSeq package
(version 0.5.3p9) (HTSeq). The differential expression between conditions was
statistically assessed by R/Bioconductor package EdgeR (version 1.10.1). Genes
with false discovery rate < 0.05 were called significant. For pathway analysis,
genes with differential expression in tissue from CR vs. OW mice after 5 months
on diet and/or in survival study mice were integrated into IPA pathway designer
(Qiagen, Venlo, Netherlands) to draw connections of regulatory relationships

using validated scientific findings.
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Statistical analyses

Values are presented as mean + standard deviation (s.d.). For all tests,
GraphPad Prism software was used (GraphPad Software Inc., La Jolla, CA), and
P < 0.05 was considered statistically significant. Differences between diet groups
in body weight were analyzed by repeated measures analysis of variance
(ANOVA) followed by Tukey’s post hoc test. Differences between diet groups in
insulin, leptin, adiponectin, IGF-1, 17B-estradiol and mammary ERa and ERf
mMRNA and protein expression at each time point were analyzed by one-way
ANOVA followed by Tukey’s post hoc test. Kaplan-Meier survival curves were
plotted, and the difference in overall survival between the groups was analyzed

by the log-rank test.

RESULTS
Dietary energy balance modulation impacts body weight, body composition
and serum metabolic hormones

Female MMTV-neu mice were randomized to receive dietary energy
balance modulation via CR, overweight-inducing (OW), or diet-induced obesity
(DIO) diet regimens, and were monitored as part of a 1, 3 and 5 month time point
study (n = 4 mice/diet for each time point) or for up to 22 months in a survival
study (n = 15 mice/diet; hereafter referred to as “survival study mice”). CR, OW,
and DIO diet regimens resulted in lean, overweight, and obese phenotypes,
respectively. After 1 month of diet treatment, differences in average caloric intake

(Supplementary Figure S1) produced differences in mean body weight (Figure
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1A), with CR < OW < DIO. This continued for up to 15 months in the survival
study mice, after which tumor development in OW and DIO mice made body
weight measurements unstable. CR mice had significantly lower percent body fat
(Figure 1B) compared with DIO mice after 1, 3 and 5 months on diet. OW mice
had intermediate percent body fat between CR and DIO.

Compared with CR mice, OW and DIO mice were metabolically
dysregulated as assessed by energy balance-related hormones (Table 1). DIO
mice, compared with CR mice, had higher serum levels of insulin, leptin, insulin-
like growth factor (IGF-1) and 17B-estradiol, and lower serum levels of
adiponectin, consistent with obesity-associated metabolic perturbations. OW
mice generally displayed intermediate levels of these metabolic factors after 1, 3

and 5 months on diet.

Dietary energy balance modulation impacts mammary ERa and ER
expression

Mammary tissue was collected from time point study mice after 1, 3 and 5
months, and from survival study mice between 14 and 22 months upon their
termination. Tissues were analyzed for ERa and ERf expression and values are
reported as relative to expression in mammary tissues collected from a baseline
sample of 5 mice killed before initiation of dietary modulation. CR mice,
compared with OW and DIO mice, had significantly higher mammary mRNA
levels of ERa after 3 and 5 months on diet and in survival study mice (Figure 2A).

In addition, mammary ERa protein levels were decreased in OW and DIO mice,
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compared to CR mice, by 1 month and continued throughout study (Figures 2B
and F).

Relative to baseline, mammary ERB mRNA levels were increased (at least
4-fold, on average) in tissues from CR mice, but decreased in tissues from OW
and DIO mice (Figure 2C). At the 1-month time point and every time point
thereafter, CR mice had significantly greater levels of both ERB mRNA and ERf
protein compared with OW and DIO mice (Figures 2C, D, and F). No differences
between OW and DIO mice in ERa expression, ERB expression, or the ratio of
ERa to ERB were found. Significant diet-dependent differences in the ERa to
ERB ratio were detected at each time point in tissues collected from CR vs. OW

mice, as well CR vs. DIO mice (Figure 2E).

Dietary energy balance modulation impacts DNA methylation within ESR1
and near ESR2

Using reduced representation bisulfite sequencing (RRBS), we analyzed
diet effects on the methylation status of DNA isolated from the mammary tissue
of baseline, CR and OW mice at the 5-month time point and in survival study
mice. Due to the similarities between OW and DIO mice in ERa and ER mRNA
and protein expression, samples from DIO mice were not analyzed.

Mammary DNA methylation was generally higher in CR mice than OW
mice, particularly in CpG dinucleotides at CTCF binding sites or flanking regions
within ESR1 and near ESR2 (Supplementary Table S2). In mammary tissue

collected in the survival study from CR mice, compared with OW mice, the
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percentage of methylated DNA was significantly different (CR > OW) at 3 distinct
intronic CpG dinucleotides (Chr10:4710028, Chr10:4710036, Chr10:4710084) at
an annotated CTCF binding site within ESR1, which encodes ERa. Diet-
dependent effects on ERa DNA methylation were not observed in samples from
the 5-month time point (Figure 3A and Supplementary Table S3).

In mammary tissue from CR mice compared with OW mice, collected at
either the 5-month time point or the survival study, 5 CpG dinucleotides near
ESR2 (the gene encoding ERB) had significantly higher methylation within or
near a CTCF binding site (Figure 3B). Specifically, significant diet-dependent
effects on DNA methylation were detected in samples from the survival study at 3
CpG dinucleotides near ESR2 (Chr 12:76080926, downstream of ESR2; and Chr
12:76184418 and Chr 12:76184436, both upstream) that all fell + 1 kb of a CTCF
binding site, which we define as a CTCF flanking region. We also observed
significantly higher methylation in CR mice at the 5-month time point at 2 other
sites (Chr 12:76086754 and Chr 12:76086771, both downstream) that fell within

an annotated CTCF binding site (Figure 3B and Supplementary Table S4).

Dietary energy balance modulation impacts ERa and ER 8 expression in

part through epigenetic mechanisms

We investigated global diet-dependent differences in mammary DNA
methylation in CR versus OW mice. After 5 months on diet, OW mice had 511
CpG dinucleotides with significantly higher methylation and 248 CpG

dinucleotides with significantly lower methylation compared with CR mice.
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Furthermore, survival study mice possessed more pronounced diet-dependent
differences in mammary DNA methylation. OW survival study mice had 651 CpG
dinucleotides with significantly higher methylation and 6901 with significantly
lower methylation compared with CR. Often, these genes with higher methylation
in CR survival compared to OW survival had higher methylation levels in baseline
and in CR and OW mice at the 5-month time point, supporting a deviance in OW
survival methylation (Figures 4A and B).

Mammary gland RNA-seq analysis demonstrated that DNA (cytosine-5)-
methyltransferase 1 (DNMT1) expression was significantly higher in OW
compared with CR survival study mice (Supplementary Table S5). To validate
RNA-seq results, we analyzed DNMT1 mRNA levels by gqRT-PCR in the
mammary tissue of CR, OW and DIO mice at all time points (Figure 4C). DNMT1
mMRNA levels were not significantly different among CR, OW and DIO mice after
1, 3 and 5 months on diet. However, in survival study mice, mammary tissues
from OW and DIO mice had significantly higher DNMT1 mRNA levels compared
with mammary tissues from CR mice.

RNA-seq analysis in non-tumor mammary tissue from the survival study
also identified several components of the signal transducer and activator of
transcription 3 (STAT3), nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB), E2F transcription factor (E2F), and insulin signaling pathways, that
can impact expression of DNMT1 and were significantly different in OW than CR
mice (Supplementary Table S5). Each of these pathways can impact expression

of DNMT1 (33-35). Thus, the metabolic and inflammation-related perturbations
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measured in OW and DIO mice (relative to CR mice) may underlie the observed

diet-dependent changes in expression of DNMTL1.

CR inhibits MMTV-neu mammary tumor development

Compared with OW and DIO diet regimens, CR was associated with
significantly increased survival (Figure 5A). Survival was comparable between
OW and DIO mice. After 22 months of study, only 1 OW mouse and 2 DIO mice,
compared with 11 CR mice, remained alive and tumor-free. Among the tumor-
bearing mice, the mammary tumors from OW (n = 12) and DIO (n = 11) mice,
compared with CR mice (n = 3), were generally more vascular and consisted of

more proliferating cells (Figure 5B).

DISCUSSION

This study assessed whether dietary energy balance modulation, ranging
from lean (CR) to overweight (OW) to obesity (DIO), alters mammary ER
expression, epigenetic reprogramming and/or mammary tumor development in
female MMTV-neu transgenic mice. We first characterized diet-dependent
metabolic perturbations in subsets of diet-treated mice euthanized at baseline, 1,
3 and 5 months on study. CR mice, relative to OW and DIO mice, had decreased
body weight, adiposity, and obesity-associated serum metabolic hormones,
including insulin, leptin, IGF-1, and 17B-estradiol, as well as increased
adiponectin, after 1 month of diet treatment, consistent with previous studies (36,

37).
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We show for the first time that CR (but not OW and DIO regimens)
preserves mammary ERa and ER[ expression in MMTV-neu mice. Loss of ERa
and ERp, and increased ERa to ER[, as observed in OW and DIO mice, have
each been linked with poor breast cancer prognosis in clinical studies (38, 39).
Our finding that the ERa to ER ratio, a prognostic indicator in breast cancer, can
be manipulated by energy balance modulation has not, to our knowledge, been
previously reported.

We and others have shown that obesity can induce aberrant DNA
methylation of genes involved in growth factor and inflammatory signaling (29,
40). To assess whether the energy balance-dependent effects on ERa and ER
expression are controlled epigenetically, we characterized epigenetic alterations
in mammary tissue DNA from baseline mice, from CR and OW mice after 5
months on diet, and from survival study mice after 14 to 22 months of diet. In
survival study mice differentially methylated CpG dinucleotides were observed in
a CTCF binding site within the ESR1 gene and in CTCF binding sites or flanking
regions (+ 1kb of a CTCF binding site) upstream and downstream of ESR2,
consistent with sustained transcriptional activation of ERa and ERB. Mammary
expression of DNMT1 was stable in CR mice but increased over time in OW and
DIO mice, suggesting CR prevented epigenetic reprogramming of DNMT1 that
occurs with excess energy intake and weight gain. The effect of altered DNMT1
expression likely impacts the expression of many genes, including ESR1 and
ESR2. However, a plausible mechanism for the sustained expression of the

ESR1 and ESR2 genes in response to CR is the maintenance of DNMT1
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expression and DNA methylation (Figure 6). This can prohibit CTCF binding,
thereby preventing allosteric repression and decreased interactions between
enhancers and promoters (24). Previous studies have shown that DNA
methylation can impede CTCF binding, positively influencing transcription via a
loss of repression of specific genes, such as GAD1 (41) and XAF1 (42), and
increased enhancer-promoter interactions in IGF2 (43) and c-MYC (44).

We also assessed the effects of dietary energy balance modulation on
mammary tumor development in a cohort of mice randomized to the three diets
(n = 15/diet). CR, relative to the OW and DIO regimens, resulted in significantly
increased survival in MMTV-neu mice in association with increased mammary
ERa and ERPB expression and DNA methylation at or near CTCF binding sites.
Specifically, of the 15 MMTV-neu mice fed the CR diet for up to 22 months, only
3 developed spontaneous mammary tumors, while the median survival of the
OW and DIO groups was less than 15 months (Figure 5A). To our knowledge,
this study is the first to demonstrate the anticancer effects of a chronic CR
regimen (compared with OW or DIO) in MMTV-neu mice. However, Mizuno et al.
found that intermittent calorie restriction decreased mammary tumor incidence in
MMTV-neu mice (45). Our findings of the anticancer effects of CR, compared
with OW or DIO regimens, are consistent with reports of a link between dietary
energy balance modulation and mammary tumorigenesis in other preclinical
models of mammary cancer (46, 47).

Two previous publications compared DIO versus chow diets (similar to our

OW regimen, Supplementary Table S6) on spontaneous mammary

21

Downloaded from cancerres.aacrjournals.org on August 13, 2019. © 2017 American Association for Cancer
Research.


http://cancerres.aacrjournals.org/

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

Author Manuscript Published OnlineFirst on April 3, 2017; DOI: 10.1158/0008-5472.CAN-16-2795
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

tumorigenesis in MMTV-neu mice. Cleary et al. reported that DIO and chow-fed
mice had similar mammary tumor development and survival, consistent with our
observation of no significant difference in tumor development or survival in OW
versus DIO mice (48). In contrast, Chen et al. reported a significant diet-
dependent difference (chow > DIO) in survival rates (49). Our findings with CR
may help reconcile these apparently conflicting results, since we found highly
significant differences in survival in CR mice relative to OW and DIO mice. Chen
et al. linked the procancer effects of DIO, relative to chow, in their study to
increased signaling through the IKKB, mTOR, and VEGF pathways which
stimulate proliferation and survival. We have previously established that DIO
increases, and CR decreases, circulating IGF-1, insulin and their downstream
signals through the IGF-1 and insulin receptor tyrosine kinases (36, 47). IGF-1 is
a potent mitogen, which promotes signaling through the IKK@, mTOR, and VEGF
pathways, ultimately promoting growth and also inhibiting apoptosis. In women
circulating IGF-1 is positively associated with terminal duct lobular unit involution,
mammographic density, and breast cancer risk (50, 51).

In the present study, we found that after 1 month of diet treatment CR
mice, relative to OW and DIO mice, had decreased serum IGF-1 and insulin
(Table 1). However, the DIO and chow-fed mice in the Cleary study did not differ
in IGF-1. Thus, one possible explanation for the observed differential tumor
responses may involve the diet-dependent effect (or lack thereof) on systemic
metabolism, particularly growth factors and their downstream signals. Differential

tumor latencies across the studies may also contribute to the apparent study-
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specific differences in tumor responses to DIO, as the median survival for the
Cleary study chow-fed mice and our OW mice were comparable (~18 months
and ~15 months, respectively), in contrast to the Chen study chow-fed mice (~7.5
months).

Interactions between dietary energy balance modulation and DNA
methylation may influence the expression of key breast cancer-related genes,
such as ERa, ERp, via diet-induced changes in DNMT1 expression and DNA
methylation at or near CTCF binding sites. Figure 6 integrates findings from RNA-
seq analysis (Supplementary Table S5) using IPA to illustrate a proposed model
of a diet responsive network contributing to altered gene expression related to
several transcription factor pathways (e.g. E2F, STAT3, and NF-kB) that serve as
regulators of DNMTL1. Inflammation promotes DNMT1 expression, which has
been shown to positively correlate with IL-6 expression in tumors and blood (52,
53). Overexpression of DNMT1 may be a mechanism utilized by cancer cells to
evade regulation by rendering tumor suppressors transcriptionally inactive (17,
54). Thus, mediators of obesity-associated inflammation may promote increased
expression of DNMT1, thereby contributing to aberrant DNA methylation and
transcription of breast cancer-related genes such as ERa and ERp.

To our knowledge, there are no previous reports regarding the
maintenance of mammary ERa and ERp positivity with a CR regimen. As
mentioned previously our CR mice had lower levels of energy balance-related
metabolic factors, including IGF-1, insulin, and leptin, consistent with numerous

studies in the literature (12, 15, 47). As illustrated in Figure 6, these factors and
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their downstream signaling pathways can also impact DNMT1, but our study is
limited in the ability to establish their precise role. Future studies are planned to
assess the possible links between systemic metabolic factors, such as insulin,
IGF-1, leptin, and 17B-estradiol and the increased mammary ERa- and ER-
associated DNA methylation at or near CTCF binding sites in CR mice.
Alternatively, the decreased levels of 173-estradiol observed in CR mice could
contribute to prolonged survival, independent of epigenetic events, as high levels
of 17B-estradiol can promote cell proliferation and tumor progression (39).
Additional study limitations include: a) restricting RRBS and RNA-seq analysis to
CR and OW mice (although OW and DIO mice were similar regarding ERa and

ER 3 mRNA and protein expression and survival); and b) not measuring physical

activity (although we have previously shown that CR, relative to control or DIO
diets, does not increase locomotor activity in mice) (55).

In conclusion, we found in MMTV-neu transgenic mice that mammary
tumor development and ERa and ERp expression are dietary energy balance-
dependent in association with epigenetic reprogramming. Specifically, a diet-
DNMT1-methylation axis may serve as a primary regulator of gene transcription
via diet-induced changes in DNA methylation at or near CTCF binding sites.
These preclinical findings suggest that interventions reducing the impact of
excess weight on epigenetic dysregulation of ER may represent a new strategy
for the prevention or control of HER2-positive breast cancer in overweight and

obese women.
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Figure Legends

Figure 1. Dietary energy balance modulation affects body weight and percent
body fat in MMTV-neu mice. (A) Body weight (mean % s.d.) in mice receiving
calorie restriction (CR), overweight-inducing (OW), or diet-induced obesity (DIO)
diet regimens over 15 months (n = 27 mice/diet). Heterogeneity in body weights
after 15 months increased as mice became moribund therefore weight data
beyond this point are not shown. Statistical differences in body weights between
groups were determined by repeated measures analysis of variance (ANOVA).
(B) Percent body fat assessed by quantitative magnetic resonance spectroscopy
(mean = s.d.) at 1, 3 and 5 months on diet (n = 4 mice/diet/time point). Statistical

differences in body fat between groups were determined by one-way ANOVA.
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OW or DIO vs. CR: *P < 0.05, **P < 0.01, ***P < 0.001. OW vs. DIO: «P < 0.05,

¢eP <0.01, e ¢ ¢P <0.001

Figure 2. Dietary energy balance modulation affects mammary ERa and ER[3
gene and protein expression. Relative mammary ERa (A) mRNA and (B) protein
levels (mean % s.d.) in CR, OW, or DIO mice at the 1-, 3- and 5-month time point
and at survival (n = 4 mice/diet/time point). Data are presented as relative to
baseline levels (n = 5 mice). Relative mammary ERB (C) mRNA and (D) protein
levels (mean % s.d.) in CR, OW, and DIO mice at 1, 3 and 5 months on diet and
at survival (n = 4 mice/diet/time point). Protein levels were analyzed by IHC, with
percent ERa and ER[ positive nuclei determined and results presented as
relative to baseline levels (n = 5 mice). (E) The ERa to ERp ratio was calculated
by dividing the percent positive nuclei for ERa by percent positive nuclei for ERJ.
(F) Representative images of ERa and ERf IHC at baseline and for each diet
group at 5 months on diet. Statistical differences in ERa or ERB mRNA and
protein between diet groups were determined by one-way ANOVA. OW or DIO

vs. CR: *P < 0.05, **P < 0.01, ***P < 0.001.

Figure 3. Dietary energy balance modulation affects DNA methylation of the
intron regions of ESR1 and upstream and downstream of ESR2. (A) ESR1 intron
methylation (mean percent DNA methylation £ s.d.) in the mammary tissue of CR
and OW mice at the 5-month time point and survival study mice. DNA

methylation at three distinct CpG dinucleotides (Chr 10: 4710028, Chr 10:
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4710036, and Chr 10: 4710084), which all fall within a CTCF binding site, are
shown. (B) Mean percent DNA methylation + s.d. at CpG dinucleotides upstream
(Chr 12: 76184418, Chr 12: 76184436) and downstream (Chr 12: 76080926, Chr
12: 76086754, Chr 12: 76086771) of ESR2 in the mammary tissue of mice
maintained on CR or OW diet regimens for 5 months or through survival are
shown. These all fall within a CTCF binding site or CTCF flanking region as
indicated. Statistical differences determined by logistic regression and the
likelihood ratio test, p-values were adjusted with the success likelihood index

method. *P < 0.05, **P < 0.01, ***P < 0.001.

Figure 4. Differences in dietary energy balance impact genome wide
methylation patterns in the mammary tissue. (A) Heat map and clustering
dendrogram of mammary tissue DNA methylation. CpG dinucleotides with
significant differences in methylation (CR survival vs. OW survival) are shown
and clustered within genomic location, i.e. promoter, exon, intron, other. Baseline,
CR and OW after 5 months on diet and CR and OW survival study mice are each
represented (n = 3/group, with one column per n shown). The methylation
frequency percentage ranges from 0 to 100. A value of ‘0’ is completely
unmethylated and ‘100’ is fully methylated. Statistical differences (CR vs. OW
survival) determined by logistic regression and the likelihood ratio test, p-values
were adjusted with the success likelihood index method. (B) Representation of
genomic locations of differentially methylated CpG dinucleotides, 6.5% mapped

to a promoter region, 34.1% mapped to a gene exon, 25.6% mapped to an intron
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region, and 33.8% did not map to a promoter, exon or intron and are classified as
‘other.” (C) Mammary DNMT1 mRNA levels, measured by qualitative real time
PCR, in mice maintained on CR, OW, and DIO diet regimens for 1, 3 and 5
months or through survival. Data are presented as relative to baseline levels (n =
4 mice). Statistical differences in DNMT1 expression determined by one-way

ANOVA *P < 0.05, **P < 0.01, *™*P < 0.001.

Figure 5. Dietary energy balance modulation affects survival, tumor vascularity
and proliferation. In MMTV-neu mice (A) Kaplan-Meier survival curves for CR,
OW and DIO mice (n = 15 mice/diet) over a 22-month period. Mice with
nontumor-related deaths (1 CR, 2 OW, and 2 DIO mice) were censored.
Statistical differences in survival rate determined by log-rank test (B)
Photomicrographs of mammary tumor sections stained with hematoxylin and
eosin and displayed at 10x or 40x magnification. Among the tumor-bearing mice,
the mammary tumors from OW (n = 12) and DIO (n = 11) mice, compared with
CR mice (n = 3) were more vascular (group mean = s.d. vascularity scores: 2.6 +
0.18, 2.2 £ 0.25, and 1.5 £ 1.5, respectively) and consisted of more proliferating
cells (group mean + s.d. number of mitotic figures, indicated by black arrowhead:
26+0.5,2.4+0.3 and 0.5 + 0.4, respectively). Statistical differences in
vascularity and mitotic figures determined by one-way ANOVA. *P < 0.05, **P <

0.01, **P < 0.001.
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Figure 6. Proposed model of an energy balance-responsive network associated
with DNMT1 regulation, DNA methylation and transcriptional regulation of ERa
and ER. Obesity and associated energy excess results in several metabolic
perturbations that are ameliorated by calorie restriction. To identify regulatory
relationships between DNMT1 and other genes that were differentially expressed
in our RNA-seq analysis, we used the Path Designer function of Ingenuity
Pathway Analysis (IPA). We found transcription factors STAT3, NF-kB and E2F
to have direct relationships with DNMT1 activation. Upstream of these
relationships, IPA also linked growth factors such as insulin and EGF, as well as
cytokines including TNF, IL-18 and IL-8, to the E2F, STAT3 and NF-kB signaling
pathways. We propose that one consequence of obesity-associated growth
factor and cytokine signaling is increased DNMT1 activation, which in turn can
modulate DNA methylation and impact transcription of important genes in breast
cancer such, as ERa and ERB. Methylated CpG dinucleotides are indicated by

red circles, unmethylated CpG dinucleotides are indicated by white circles.
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Table 1. Energy balance impacts serum metabolic hormones
LGl CR ow DIO
on Diet
Baseline 0.83 +0.40
Insulin 1 0.5+£0.3 0.7+£0.1 1.4+0.7
(ng/mL) 3 0.30.1 0.8+0.6 1.0+0.6
5 0.2+0.1 0.7+0.2 18405 '**
Baseline 0.94 +£0.38
Leptin 1 0.7+£05 28+ 2.7* 44+ 3.4*
(ng/mL) 3 0.6 +0.5 4.1+2.4 6.0+27
5 02402 32+20 92+61
Baseline 2.02 +0.32
Adiponectin 1 3.8+05 3.1% 0.7* 28+ 0_3**
(ng/mL) 3 45+0.9 31203 24106
5 43+0.9 26+0.2 23+0.5
Baseline 463.2 +88.7
IGF-1 1 232.2+96.7 396.5+70.3 4254 + 36.8
(ng/mL) 3 187.8+265 3444+564 5039+1122 '°
5 1949+264 3762+285 4520577 ' °
Baseline 209.8
17 B - 1 1556 £50.9 180.4 £68.0 2279+ 36.7
estradiol * *
(pg/mL) 3 148.7£25.2 2624 +42.1 260.1 + 58.8
5 174+17.4 198.1+22.3 210.4 £54.5
861 Differences between diet groups in insulin, leptin, adiponectin, IGF-1, and 17f3-
862  estradiol at each time point were analyzed by one-way ANOVA followed by
863  Tukey’s post hoc test. OW or DIO vs. CR: *P < 0.05, **P < 0.01, ***P < 0.001.
864 OWvs.DIO: ¢P <0.05, ¢« ¢P <0.01, e ¢ ¢P <0.001.
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