12,238 research outputs found

    Direct observation of a highly spin-polarized organic spinterface at room temperature

    Get PDF
    The design of large-scale electronic circuits that are entirely spintronics-driven requires a current source that is highly spin-polarised at and beyond room temperature, cheap to build, efficient at the nanoscale and straightforward to integrate with semiconductors. Yet despite research within several subfields spanning nearly two decades, this key building block is still lacking. We experimentally and theoretically show how the interface between Co and phthalocyanine molecules constitutes a promising candidate. Spin-polarised direct and inverse photoemission experiments reveal a high degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the molecules's nitrogen pi orbitals, which substantiates an ab-initio theoretical description of highly spin-polarised charge conduction across the interface due to differing spinterface formation mechanims in each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic interfaces with remarkable spintronic properties that can endure well above room temperature

    Standard Model Top Quark Asymmetry at the Fermilab Tevatron

    Full text link
    Top quark pair production at proton-antiproton colliders is known to exhibit a forward-backward asymmetry due to higher-order QCD effects. We explore how this asymmetry might be studied at the Fermilab Tevatron, including how the asymmetry depends on the kinematics of extra hard partons. We consider results for top quark pair events with one and two additional hard jets. We further note that a similar asymmetry, correlated with the presence of jets, arises in specific models for parton showers in Monte Carlo simulations. We conclude that the measurement of this asymmetry at the Tevatron will be challenging, but important both for our understanding of QCD and for our efforts to model it.Comment: 26 p., 10 embedded figs., comment added, version to appear in PR

    Teleportation as a Depolarizing Quantum Channel, Relative Entropy and Classical Capacity

    Get PDF
    We show that standard teleportation with an arbitrary mixed state resource is equivalent to a generalized depolarizing channel with probabilities given by the maximally entangled components of the resource. This enables the usage of any quantum channel as a generalized depolarizing channel without additional twirling operations. It also provides a nontrivial upper bound on the entanglement of a class of mixed states. Our result allows a consistent and statistically motivated quantification of teleportation success in terms of the relative entropy and this quantification can be related to a classical capacity.Comment: Version published in Phys. Rev. Let

    A mass balance for 137Cs and 90Sr in the North Atlantic Ocean

    Get PDF
    The total inventory of 137Cs(3272 kCi) and 90Sr(2257 kCi) in the North Atlantic Ocean in 1972, as well as the subinventories in the 0 to 1000 m, 1000 to 2000 m, 2000 m to bottom layers, continental shelf waters and bottom sediments, have been estimated. We have been careful to provide reliable estimates of uncertainty for each of these values. We have also estimated the inputs of 137Cs to the Atlantic Ocean as direct fallout (2065 kCi), or as ocean current transport (240 kCi) since the start of large scale nuclear testing...

    Systems biology: A tool for charting the antiviral landscape

    Get PDF
    The host antiviral programs that are initiated following viral infection form a dynamic and complex web of responses that we have collectively termed as “the antiviral landscape”. Conventional approaches to studying antiviral responses have primarily used reductionist systems to assess the function of a single or a limited subset of molecules. Systems biology is a holistic approach that considers the entire system as a whole, rather than individual components or molecules. Systems biology based approaches facilitate an unbiased and comprehensive analysis of the antiviral landscape, while allowing for the discovery of emergent properties that are missed by conventional approaches. The antiviral landscape can be viewed as a hierarchy of complexity, beginning at the whole organism level and progressing downward to isolated tissues, populations of cells, and single cells. In this review, we will discuss how systems biology has been applied to better understand the antiviral landscape at each of these layers. At the organismal level, the Collaborative Cross is an invaluable genetic resource for assessing how genetic diversity influences the antiviral responses. Whole tissue and isolated bulk cell transcriptomics serves as a critical tool for the comprehensive analysis of antiviral responses at both the tissue and cellular levels of complexity. Finally, new techniques in single cell analysis are emerging tools that will revolutionize our understanding of how individual cells within a bulk infected cell population contribute to the overall antiviral landscape

    Locality in the creation of electron-positron pairs

    Get PDF
    We examine the mathematical solutions of the Dirac equation to predict the spontaneous electron-positron pair creation from the vacuum. The Dirac equation contains a position and time-dependent scalar potential to approximate the effect of an external force on the vacuum. We focus on forces that are localized in space as well as in time and find that the resulting creation process is also localized in time but delocalized in space. This illustrates that the Dirac equation can show nonlocal behavior as it predicts that particles can be created even in spatial regions where the force is zero. We also examine the spatial distribution of the created particles and show that for spatially extended force fields it is proportional to the square of the position dependence of the force. But when the force field is narrower than the Compton wavelength, the created electron density approaches a universal shape invariant form that is independent of the strength of the force for sufficiently weak field strength

    Computational Culture and A.I.: Challenging human identity and curatorial practice

    Get PDF
    This paper records a half-day Symposium of invited talks on the first day of the EVA London 2020 Conference. It continues a series from the previous four EVA London Symposiums held since 2016 (Bowen & Giannini 2016; Bowen, Giannini & Polmeer 2017; Bowen, Giannini, et al. 2018; 2019)

    Second order perturbations of a Schwarzschild black hole: inclusion of odd parity perturbations

    Get PDF
    We consider perturbations of a Schwarzschild black hole that can be of both even and odd parity, keeping terms up to second order in perturbation theory, for the â„“=2\ell=2 axisymmetric case. We develop explicit formulae for the evolution equations and radiated energies and waveforms using the Regge-Wheeler-Zerilli approach. This formulation is useful, for instance, for the treatment in the ``close limit approximation'' of the collision of counterrotating black holes.Comment: 12 pages RevTe

    Evaluation of a Spyware Detection System Using Thin Client Computing

    Get PDF
    In previous work, we introduced a bait injection system designed to delude and detect crimeware by forcing it to reveal itself during the exploitation of monitored information. Although effective as a technique, our original system was practically limited, as it was implemented in a personal VM environment. In this paper, we extend our system by applying it to thin-clien to demonstrate how the approach can be used in a large-scale deployment. Adapting our system to such an environment revealed a number of challenging issues, such as scalability, portability, and choice of physical communication means. We provide implementation details, as well as experimental results that demonstrate the scalability and effectiveness of our system
    • …
    corecore