13,702 research outputs found

    Photosensors used to maintain welding electrode-to-joint alignment

    Get PDF
    Photosensors maintain electrode-to-joint alignment in automatic precision arc welding. They detect the presence and relative position of a joint to be welded and actuate a servomechanism to guide the welding head accordingly thus permitting alignment for more than straight line or true circle joints

    Collisions of boosted black holes: perturbation theory prediction of gravitational radiation

    Get PDF
    We consider general relativistic Cauchy data representing two nonspinning, equal-mass black holes boosted toward each other. When the black holes are close enough to each other and their momentum is sufficiently high, an encompassing apparent horizon is present so the system can be viewed as a single, perturbed black hole. We employ gauge-invariant perturbation theory, and integrate the Zerilli equation to analyze these time-asymmetric data sets and compute gravitational wave forms and emitted energies. When coupled with a simple Newtonian analysis of the infall trajectory, we find striking agreement between the perturbation calculation of emitted energies and the results of fully general relativistic numerical simulations of time-symmetric initial data.Comment: 5 pages (RevTex 3.0 with 3 uuencoded figures), CRSR-107

    Extraordinarily high leaf selenium to sulfur ratios define ‘se-accumulator’ plants

    Get PDF
    Background and Aims: Selenium (Se) and sulfur (S) exhibit similar chemical properties. In flowering plants (angiosperms) selenate and sulfate are acquired and assimilated by common transport and metabolic pathways. It is hypothesized that most angiosperm species show little or no discrimination in the accumulation of Se and S in leaves when their roots are supplied a mixture of selenate and sulfate, but some, termed Se-accumulator plants, selectively accumulate Se in preference to S under these conditions. Methods: This paper surveys Se and S accumulation in leaves of 39 angiosperm species, chosen to represent the range of plant Se accumulation phenotypes, grown hydroponically under identical conditions. Results: The data show that, when supplied a mixture of selenate and sulfate: (1) plant species differ in both their leaf Se ([Se]leaf) and leaf S ([S]leaf) concentrations; (2) most angiosperms show little discrimination for the accumulation of Se and S in their leaves and, in non-accumulator plants, [Se]leaf and [S]leaf are highly correlated; (3) [Se]leaf in Se-accumulator plants is significantly greater than in other angiosperms, but [S]leaf, although high, is within the range expected for angiosperms in general; and (4) the Se/S quotient in leaves of Se-accumulator plants is significantly higher than in leaves of other angiosperms. Conclusion: The traits of extraordinarily high [Se]leaf and leaf Se/S quotients define the distinct elemental composition of Se-accumulator plants

    Stable resonances and signal propagation in a chaotic network of coupled units

    Full text link
    We apply the linear response theory developed in \cite{Ruelle} to analyze how a periodic signal of weak amplitude, superimposed upon a chaotic background, is transmitted in a network of non linearly interacting units. We numerically compute the complex susceptibility and show the existence of specific poles (stable resonances) corresponding to the response to perturbations transverse to the attractor. Contrary to the poles of correlation functions they depend on the pair emitting/receiving units. This dynamic differentiation, induced by non linearities, exhibits the different ability that units have to transmit a signal in this network.Comment: 10 pages, 3 figures, to appear in Phys. rev.

    Teleportation of continuous variable polarisation states

    Get PDF
    This paper discusses methods for the optical teleportation of continuous variable polarisation states. We show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of optical polarisation states can be performed. Restricting ourselves to 3 squeezed beams, we demonstrate that polarisation state teleportation can still exceed the classical limit. The 3-squeezer schemes involve either the use of quantum non-demolition measurement or biased entanglement generated from a single squeezed beam. We analyse the efficacies of these schemes in terms of fidelity, signal transfer coefficients and quantum correlations

    The Dust Content of Galaxy Clusters

    Full text link
    We report on the detection of reddening toward z ~ 0.2 galaxy clusters. This is measured by correlating the Sloan Digital Sky Survey cluster and quasar catalogs and by comparing the photometric and spectroscopic properties of quasars behind the clusters to those in the field. We find mean E(B-V) values of a few times 10^-3 mag for sight lines passing ~Mpc from the clusters' center. The reddening curve is typical of dust but cannot be used to distinguish between different dust types. The radial dependence of the extinction is shallow near the cluster center suggesting that most of the detected dust lies at the outskirts of the clusters. Gravitational magnification of background z ~ 1.7 sources seen on Mpc (projected) scales around the clusters is found to be of order a few per cent, in qualitative agreement with theoretical predictions. Contamination by different spectral properties of the lensed quasar population is unlikely but cannot be excluded.Comment: 4 pages, 3 figure

    Facies analysis and Reservoir Characterization of the Cambrian Mount Simon Formation in the Illinois Basin: Implications for CO Sequestration and Storage

    Get PDF
    This poster was presented at the American Association of Petroleum Geologists (AAPG) Annual Meeting, from June 7-10, 2009, in Denver, Colorado.Deep saline reservoirs have become a target of increased study with the development of carbon sequestration technologies. In the Illinois Basin, The Upper Cambrian Mt. Simon Formation has been proposed as a potential reservoir for CO2 sequestration. Depth and limited economic interest in the Mt. Simon have left it minimally explored with previous detailed depositional facies analysis only performed at localities outside of the Illinois Basin, where the Mt. Simon is much thinner and closer to the surface. From the analysis of recently acquired and preexisting relatively complete cores and composite cores of the Mt. Simon Formation in addition to basin wide correlation with geophysical well logs, we present a revised model for the deposition of the Mt. Simon Formation in the Illinois Basin region and the resulting implications for a CO2 reservoir. The Mt. Simon Formation is a sub-quartz to quartz arenite that unconformably overlies the crystalline basement of the interior North American craton. Thickness of the Mt. Simon ranges from a few hundred to over 2000 feet thick and structually from 2000 to over 14000 feet below sea level. The upper contact of the Mt. Simon Formation is gradational with the overlying Eau Clair Formation while the lower contact unconformably bounds the crystalline basement. Core analysis has led to the identification of several distinct facies within the Mt. Simon. The lowermost facies is dominated by medium grain to granular eolian sands with distinct interdunal red mudstone. Gradationally above the lowermost facies, tidal indicators become increasingly present with mud drapes and flaser bedding located in isolated units. This transgressive sequence from nonmarine to marine depositional environments correlates with sea level curves for the Upper Cambrian. By increasing our understanding of the Mt. Simon, we can better understand its CO2 reservoir potential

    Finite type approximations of Gibbs measures on sofic subshifts

    Full text link
    Consider a H\"older continuous potential ϕ\phi defined on the full shift A^\nn, where AA is a finite alphabet. Let X\subset A^\nn be a specified sofic subshift. It is well-known that there is a unique Gibbs measure μϕ\mu_\phi on XX associated to ϕ\phi. Besides, there is a natural nested sequence of subshifts of finite type (Xm)(X_m) converging to the sofic subshift XX. To this sequence we can associate a sequence of Gibbs measures (μϕm)(\mu_{\phi}^m). In this paper, we prove that these measures weakly converge at exponential speed to μϕ\mu_\phi (in the classical distance metrizing weak topology). We also establish a strong mixing property (ensuring weak Bernoullicity) of μϕ\mu_\phi. Finally, we prove that the measure-theoretic entropy of μϕm\mu_\phi^m converges to the one of μϕ\mu_\phi exponentially fast. We indicate how to extend our results to more general subshifts and potentials. We stress that we use basic algebraic tools (contractive properties of iterated matrices) and symbolic dynamics.Comment: 18 pages, no figure
    • …
    corecore