86 research outputs found

    The evolution of the class A scavenger receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The class A scavenger receptors are a subclass of a diverse family of proteins defined based on their ability to bind modified lipoproteins. The 5 members of this family are strikingly variable in their protein structure and function, raising the question as to whether it is appropriate to group them as a family based on their ligand binding abilities.</p> <p>Results</p> <p>To investigate these relationships, we defined the domain architecture of each of the 5 members followed by collecting and annotating class A scavenger receptor mRNA and amino acid sequences from publicly available databases. Phylogenetic analyses, sequence alignments, and permutation tests revealed a common evolutionary ancestry of these proteins, indicating that they form a protein family. We postulate that 4 distinct gene duplication events and subsequent domain fusions, internal repeats, and deletions are responsible for the diverse protein structures and functions of this family. Despite variation in domain structure, there are highly conserved regions across all 5 members, indicating the possibility that these regions may represent key conserved functional motifs.</p> <p>Conclusions</p> <p>We have shown with significant evidence that the 5 members of the class A scavenger receptors form a protein family. We have indicated that these receptors have a common origin which may provide insight into future functional work with these proteins.</p

    Adenovirus E1A directly targets the E2F/DP-1 complex

    Get PDF
    Deregulation of the cell cycle is of paramount importance during adenovirus infection. Adenovirus normally infects quiescent cells and must initiate the cell cycle in order to propagate itself. The pRb family of proteins controls entry into the cell cycle by interacting with and repressing transcriptional activation by the E2F transcription factors. The viral E1A proteins indirectly activate E2F-dependent transcription and cell cycle entry, in part, by interacting with pRb and family members to free the E2Fs. We report here that an E1A 13S isoform can unexpectedly activate E2F-responsive gene expression independently of binding to the pRb family of proteins. We demonstrate that E1A binds to E2F/DP-1 complexes through a direct interaction with DP-1. E1A appears to utilize this binding to recruit itself to E2F-regulated promoters, and this allows the E1A 13S protein, but not the E1A 12S protein, to activate transcription independently of interaction with pRb. Importantly, expression of E1A 13S, but not E1A 12S, led to significant enhancement of E2F4 occupancy of E2F sites of two E2F-regulated promoters. These observations identify a novel mechanism by which adenovirus deregulates the cell cycle and suggest that E1A 13S may selectively activate a subset of E2F-regulated cellular genes during infection. © 2011, American Society for Microbiology

    Monocyte-driven inflamm-aging reduces intestinal barrier function in females

    Get PDF
    Background: The intestinal barrier encompasses physical and immunological components that act to compartmentalize luminal contents, such as bacteria and endotoxins, from the host. It has been proposed that an age-related decline of intestinal barrier function may allow for the passage of luminal contents into the bloodstream, triggering a low-grade systemic inflammation termed inflamm-aging. Although there is mounting evidence to support this hypothesis in model species, it is unclear if this phenomenon occurs in humans. In addition, despite being well-established that biological sex impacts aging physiology, its influence on intestinal barrier function and inflamm-aging has not been explored. Results: In this study, we observed sex differences in markers of intestinal barrier integrity, where females had increased epithelial permeability throughout life as compared to males. With age, females had an age-associated increase in circulating bacterial products and metabolites such as LPS and kynurenine, suggesting reduced barrier function. Females also had age-associated increases in established markers of inflamm-aging, including peripheral blood monocytes as well as TNF and CRP. To determine if impaired barrier function was driving inflamm-aging, we performed a mediation analysis. The results show that the loss of intestinal barrier integrity was not the mediator of inflamm-aging in humans. Instead, persistent, low-grade inflammation with age preceded the increase in circulating bacterial products, which we confirmed using animal models. We found, as in humans, that sex modified age-associated increases in circulating monocytes in mice, and that inflammation mediates the loss of intestinal barrier function. Conclusion: Taken together, our results suggest that higher basal intestinal permeability in combination with age-associated inflammation, increases circulating LPS in females. Thus, targeting barrier permeability in females may slow the progression of inflamm-aging, but is unlikely to prevent it. <br/

    Neutrophil-mediated innate immune resistance to bacterial pneumonia is dependent on Tet2 function

    Get PDF
    We thank Clare A. Edward for technical assistance and Catherine M. Andary for being a second scorer for IF and histopathological analysis. We also thank Elsa N. Bou Ghanem and Manmeet Bhalla for their assistance with the neutrophil killing assays. DMEB was funded through the Canadian Research Chairs program and CIHR. CQ was supported by a CIHR Postdoctoral Fellowship Award. JB was supported by a MIRA fellowship. This study was supported by a project grant from the CIHR (PJT-156291).Peer reviewe

    A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease

    Get PDF
    Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a diverse variety of ligands including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by theUnited StatesNational Institute of Allergy and Infectious Diseases, National Institutes of Health, to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of nonself or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. This classification was discussed at three national meetings and input from participants at these meetings was requested. The following manuscript is a consensus statement that combines the recommendations of the initial workshop and incorporates the input received from the participants at the three national meetings

    MARCO, TLR2, and CD14 Are Required for Macrophage Cytokine Responses to Mycobacterial Trehalose Dimycolate and Mycobacterium tuberculosis

    Get PDF
    Virtually all of the elements of Mycobacterium tuberculosis (Mtb) pathogenesis, including pro-inflammatory cytokine production, granuloma formation, cachexia, and mortality, can be induced by its predominant cell wall glycolipid, trehalose 6,6′-dimycolate (TDM/cord factor). TDM mediates these potent inflammatory responses via interactions with macrophages both in vitro and in vivo in a myeloid differentiation factor 88 (MyD88)-dependent manner via phosphorylation of the mitogen activated protein kinases (MAPKs), implying involvement of toll-like receptors (TLRs). However, specific TLRs or binding receptors for TDM have yet to be identified. Herein, we demonstrate that the macrophage receptor with collagenous structure (MARCO), a class A scavenger receptor, is utilized preferentially to “tether” TDM to the macrophage and to activate the TLR2 signaling pathway. TDM-induced signaling, as measured by a nuclear factor-kappa B (NF-κB)-luciferase reporter assay, required MARCO in addition to TLR2 and CD14. MARCO was used preferentially over the highly homologous scavenger receptor class A (SRA), which required TLR2 and TLR4, as well as their respective accessory molecules, in order for a slight increase in NF-κB signaling to occur. Consistent with these observations, macrophages from MARCO−/− or MARCO−/−SRA−/− mice are defective in activation of extracellular signal-related kinase 1/2 (ERK1/2) and subsequent pro-inflammatory cytokine production in response to TDM. These results show that MARCO-expressing macrophages secrete pro-inflammatory cytokines in response to TDM by cooperation between MARCO and TLR2/CD14, whereas other macrophage subtypes (e.g. bone marrow–derived) may rely somewhat less effectively on SRA, TLR2/CD14, and TLR4/MD2. Macrophages from MARCO−/− mice also produce markedly lower levels of pro-inflammatory cytokines in response to infection with virulent Mtb. These observations identify the scavenger receptors as essential binding receptors for TDM, explain the differential response to TDM of various macrophage populations, which differ in their expression of the scavenger receptors, and identify MARCO as a novel component required for TLR signaling

    An Accessory to the ‘Trinity’: SR-As Are Essential Pathogen Sensors of Extracellular dsRNA, Mediating Entry and Leading to Subsequent Type I IFN Responses

    Get PDF
    Extracellular RNA is becoming increasingly recognized as a signaling molecule. Virally derived double stranded (ds)RNA released into the extracellular space during virus induced cell lysis acts as a powerful inducer of classical type I interferon (IFN) responses; however, the receptor that mediates this response has not been identified. Class A scavenger receptors (SR-As) are likely candidates due to their cell surface expression and ability to bind nucleic acids. In this study, we investigated a possible role for SR-As in mediating type I IFN responses induced by extracellular dsRNA in fibroblasts, a predominant producer of IFNβ. Fibroblasts were found to express functional SR-As, even SR-A species thought to be macrophage specific. SR-A specific competitive ligands significantly blocked extracellular dsRNA binding, entry and subsequent interferon stimulated gene (ISG) induction. Candidate SR-As were systematically investigated using RNAi and the most dramatic inhibition in responses was observed when all candidate SR-As were knocked down in unison. Partial inhibition of dsRNA induced antiviral responses was observed in vivo in SR-AI/II-/- mice compared with WT controls. The role of SR-As in mediating extracellular dsRNA entry and subsequent induced antiviral responses was observed in both murine and human fibroblasts. SR-As appear to function as ‘carriers’, facilitating dsRNA entry and delivery to the established dsRNA sensing receptors, specifically TLR3, RIGI and MDA-5. Identifying SR-As as gatekeepers of the cell, mediating innate antiviral responses, represents a novel function for this receptor family and provides insight into how cells recognize danger signals associated with lytic virus infections. Furthermore, the implications of a cell surface receptor capable of recognizing extracellular RNA may exceed beyond viral immunity to mediating other important innate immune functions

    Nasal cathelicidin is expressed in early life and is increased during mild, but not severe respiratory syncytial virus infection

    Get PDF
    Respiratory syncytial virus is the major cause of acute lower respiratory tract infections in young children, causing extensive mortality and morbidity globally, with limited therapeutic or preventative options. Cathelicidins are innate immune antimicrobial host defence peptides and have antiviral activity against RSV. However, upper respiratory tract cathelicidin expression and the relationship with host and environment factors in early life, are unknown. Infant cohorts were analysed to characterise early life nasal cathelicidin levels, revealing low expression levels in the first week of life, with increased levels at 9 months which are comparable to 2-year-olds and healthy adults. No impact of prematurity on nasal cathelicidin expression was observed, nor were there effects of sex or birth mode, however, nasal cathelicidin expression was lower in the first week-of-life in winter births. Nasal cathelicidin levels were positively associated with specific inflammatory markers and demonstrated to be associated with microbial community composition. Importantly, levels of nasal cathelicidin expression were elevated in infants with mild RSV infection, but, in contrast, were not upregulated in infants hospitalised with severe RSV infection. These data suggest important relationships between nasal cathelicidin, upper airway microbiota, inflammation, and immunity against RSV infection, with interventional potential
    corecore