3,749 research outputs found

    Magnetic properties of a novel Pr Fe Ti phase

    Get PDF
    In a systematic study of the (Pr1−xTix)Fe5 alloy series, the (Pr0.65Ti0.35)Fe5 alloy has been found to have a dominant phase with either the rhombohedral Th2Zn17 structure or the newly discovered Nd2(Fe,Ti)19 (S. J. Collocott, R. K. Day, J. B. Dunlop, and R. L. Davis, in Proceedings of the Seventh International Symposium on Magnetic Anisotropy and Coercivity in R‐T Alloys, Canberra, July 1992, p. 437) structure, depending on the annealing procedure. Powder‐x‐ray‐diffraction patterns and scanning electron microscopy show that the sample annealed at a temperature of 850 °C followed by 1000 °C has the 2:17 structure whereas annealing at 1000 °C directly leads to the new 2:19 structure. Energy‐dispersive x‐ray analysis yields Pr:Fe:Ti ratios of 10.7:86.2:3.1 for the Pr2(Fe,Ti)17 phase and 9.2:85.9:4.9 for the Pr2(Fe,Ti)19 phase. 57 Fe Mössbauer spectroscopy (at 295 K) gives values for the average 57 Fe hyperfine field of 15.7 T for the 2:17 phase and 17.5 T for the 2:19 phase, respectively

    Vibrational Stability of NLC Linac and Final Focus Components

    Get PDF
    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.Comment: 3 pages, 8 figures presented at the LINAC 2002 conference, Gyeongju Kore

    Real-time deployment of artificial neural network forecasting models: Understanding the range of applicability

    Get PDF
    Extent: 16p.When an operational artificial neural network (ANN) model is deployed, new input patterns are collected in order to make real-time forecasts. However, ANNs (like other empirical and statistical methods) are unable to reliably extrapolate beyond the calibration range. Consequently, when deployed in real-time operation there is a need to determine if new input patterns are representative of the data used in calibrating the model. To address this problem, a novel detection system for identifying uncharacteristic data patterns is presented. This approach combines a self-organizing map (SOM), to partition the data set, with nonparametric kernel density estimators to calculate local density estimates (LDE). The SOM-LDE method determines the degree to which a new input pattern can be considered to be contained within the domain of the calibration set. If a new pattern is found to be uncharacteristic, a warning can be issued with the forecast, and the ANN model retrained to include the new pattern. This approach of selectively retraining the model is compared to no retraining and the more computationally onerous case of retraining the model after each new sample. These three approaches are applied to forecast flow in the Kentucky River, USA, using multilayer perceptron (MLP) models. The results demonstrate that there is a significant advantage in retraining an ANN that has been deployed as a real-time, operational model, and that the SOM-LDE classifier is an effective approach for identifying the model's range of applicability and assessing the usefulness of the forecast.Gavin J. Bowden, Holger R. Maier, and Graeme C. Dand

    Assessing the Added Value of Dynamical Downscaling Using the Standardized Precipitation Index

    Get PDF
    In this study, the Standardized Precipitation Index (SPI) is used to ascertain the added value of dynamical downscaling over the contiguous United States. WRF is used as a regional climate model (RCM) to dynamically downscale reanalysis fields to compare values of SPI over drought timescales that have implications for agriculture and water resources planning. The regional climate generated by WRF has the largest improvement over reanalysis for SPI correlation with observations as the drought timescale increases. This suggests that dynamically downscaled fields may be more reliable than larger-scale fields for water resource applications (e.g., water storage within reservoirs). WRF improves the timing and intensity of moderate to extreme wet and dry periods, even in regions with homogenous terrain. This study also examines changes in SPI from the extreme drought of 1988 and three “drought busting” tropical storms. Each of those events illustrates the importance of using downscaling to resolve the spatial extent of droughts. The analysis of the “drought busting” tropical storms demonstrates that while the impact of these storms on ending prolonged droughts is improved by the RCM relative to the reanalysis, it remains underestimated. These results illustrate the importance and some limitations of using RCMs to project drought

    An integrated study of earth resources in the state of California using remote sensing techniques

    Get PDF
    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources

    Contact and Friction of Nano-Asperities: Effects of Adsorbed Monolayers

    Full text link
    Molecular dynamics simulations are used to study contact between a rigid, nonadhesive, spherical tip with radius of order 30nm and a flat elastic substrate covered with a fluid monolayer of adsorbed chain molecules. Previous studies of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip constructed from discrete atoms lead to significant deviations from continuum theory and dramatic variability in friction forces. Introducing an adsorbed monolayer leads to larger deviations from continuum theory, but decreases the variations between tips with different atomic structure. Although the film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except for certain tips at high loads. Measures of the contact area based on the moments or outer limits of the pressure distribution and on counting contacting atoms are compared. The number of tip atoms making contact in a time interval grows as a power of the interval when the film is present and logarithmically with the interval for bare surfaces. Friction is measured by displacing the tip at a constant velocity or pulling the tip with a spring. Both static and kinetic friction rise linearly with load at small loads. Transitions in the state of the film lead to nonlinear behavior at large loads. The friction is less clearly correlated with contact area than load.Comment: RevTex4, 17 pages, 13 figure

    Lava channel formation during the 2001 eruption on Mount Etna: evidence for mechanical erosion

    Full text link
    We report the direct observation of a peculiar lava channel that was formed near the base of a parasitic cone during the 2001 eruption on Mount Etna. Erosive processes by flowing lava are commonly attributed to thermal erosion. However, field evidence strongly suggests that models of thermal erosion cannot explain the formation of this channel. Here, we put forward the idea that the essential erosion mechanism was abrasive wear. By applying a simple model from tribology we demonstrate that the available data agree favorably with our hypothesis. Consequently, we propose that erosional processes resembling the wear phenomena in glacial erosion are possible in a volcanic environment.Comment: accepted for publication in Physical Review Letter
    corecore