Journal of Applied Physics / Volume 75 / Issue 10

J. Appl. Phys. 75, 7120 (1994); doi:10.1063/1.356698 (2 pages)

Magnetic properties of a novel Pr - Fe - Ti phase

Hong - Shuo Li¹, Suharyana¹, J. M. Cadogan¹, G. J. Bowden¹, Jian - Min Xu², S. X. Dou², and H. K. Liu²

¹School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia 9map
²School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW 2033, Australia 9map

In a systematic study of the $(Pr_{1-x}Ti_x)Fe_5$ alloy series, the $(Pr_{0.65}Ti_{0.35})Fe_5$ alloy has been found to have a dominant phase with either the rhombohedral Th₂Zn₁₇ structure or the newly discovered Nd₂(Fe,Ti)₁₉ (S. J. Collocott, R. K. Day, J. B. Dunlop, and R. L. Davis, in Proceedings of the Seventh International Symposium on Magnetic Anisotropy and Coercivity in R - T Alloys, Canberra, July 1992, p. 437) structure, depending on the annealing procedure. Powder - x - ray - diffraction patterns and scanning electron microscopy show that the sample annealed at a temperature of 850 °C followed by 1000 °C has the 2:17 structure whereas annealing at 1000 °C directly leads to the new 2:19 structure. Energy - dispersive x - ray analysis yields Pr:Fe:Ti ratios of 10.7:86.2:3.1 for the Pr₂(Fe,Ti)₁₇ phase and 9.2:85.9:4.9 for the Pr₂(Fe,Ti)₁₉ phase. ⁵⁷Fe Mössbauer spectroscopy (at 295 K) gives values for the average ⁵⁷Fe hyperfine field of 15.7 T for the 2:17 phase and 17.5 T for the 2:19 phase, respectively.