4,689 research outputs found

    Survival of Organic Materials in Hypervelocity Impacts of Ice on Sand, Ice, and Water in the Laboratory

    Get PDF
    The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ?2 and ?4?km s?1 at targets that included water ice, water, and sand. This involved shock pressures in the range of 2–12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9?km s?1 and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies

    An integrated study of earth resources in the state of California using remote sensing techniques

    Get PDF
    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources

    Reactor monitoring and safeguards using antineutrino detectors

    Full text link
    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.Comment: 6 pages, 4 figures, Proceedings of XXIII International Conference on Neutrino Physics and Astrophysics (Neutrino 2008); v2: minor additions to reference

    Assessing the Added Value of Dynamical Downscaling Using the Standardized Precipitation Index

    Get PDF
    In this study, the Standardized Precipitation Index (SPI) is used to ascertain the added value of dynamical downscaling over the contiguous United States. WRF is used as a regional climate model (RCM) to dynamically downscale reanalysis fields to compare values of SPI over drought timescales that have implications for agriculture and water resources planning. The regional climate generated by WRF has the largest improvement over reanalysis for SPI correlation with observations as the drought timescale increases. This suggests that dynamically downscaled fields may be more reliable than larger-scale fields for water resource applications (e.g., water storage within reservoirs). WRF improves the timing and intensity of moderate to extreme wet and dry periods, even in regions with homogenous terrain. This study also examines changes in SPI from the extreme drought of 1988 and three “drought busting” tropical storms. Each of those events illustrates the importance of using downscaling to resolve the spatial extent of droughts. The analysis of the “drought busting” tropical storms demonstrates that while the impact of these storms on ending prolonged droughts is improved by the RCM relative to the reanalysis, it remains underestimated. These results illustrate the importance and some limitations of using RCMs to project drought

    Contact and Friction of Nano-Asperities: Effects of Adsorbed Monolayers

    Full text link
    Molecular dynamics simulations are used to study contact between a rigid, nonadhesive, spherical tip with radius of order 30nm and a flat elastic substrate covered with a fluid monolayer of adsorbed chain molecules. Previous studies of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip constructed from discrete atoms lead to significant deviations from continuum theory and dramatic variability in friction forces. Introducing an adsorbed monolayer leads to larger deviations from continuum theory, but decreases the variations between tips with different atomic structure. Although the film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except for certain tips at high loads. Measures of the contact area based on the moments or outer limits of the pressure distribution and on counting contacting atoms are compared. The number of tip atoms making contact in a time interval grows as a power of the interval when the film is present and logarithmically with the interval for bare surfaces. Friction is measured by displacing the tip at a constant velocity or pulling the tip with a spring. Both static and kinetic friction rise linearly with load at small loads. Transitions in the state of the film lead to nonlinear behavior at large loads. The friction is less clearly correlated with contact area than load.Comment: RevTex4, 17 pages, 13 figure

    Experimental evidence of non-Amontons behaviour at a multicontact interface

    Get PDF
    We report on normal stress field measurements at the multicontact interface between a rough elastomeric film and a smooth glass sphere under normal load, using an original MEMS-based stress sensing device. These measurements are compared to Finite Elements Method calculations with boundary conditions obeying locally Amontons' rigid-plastic-like friction law with a uniform friction coefficient. In dry contact conditions, significant deviations are observed which decrease with increasing load. In lubricated conditions, the measured profile recovers almost perfectly the predicted profile. These results are interpreted as a consequence of the finite compliance of the multicontact interface, a mechanism which is not taken into account in Amontons' law

    Impact resistant boron/aluminum composites for large fan blades

    Get PDF
    Blade-like specimens were subjected to static ballistic impact testing to determine their relative FOD impact resistance levels. It was determined that a plus or minus 15 deg layup exhibited good impact resistance. The design of a large solid boron/aluminum fan blade was conducted based on the FOD test results. The CF6 fan blade was used as a baseline for these design studies. The solid boron/aluminum fan blade design was used to fabricate two blades. This effort enabled the assessment of the scale up of existing blade manufacturing details for the fabrication of a large B/Al fan blade. Existing CF6 fan blade tooling was modified for use in fabricating these blades

    Gamma-Ray Emissions from Pulsars: Spectra of the TEV Fluxes from Outer-Gap Accelerators

    Full text link
    We study the gamma-ray emissions from an outer-magnetospheric potential gap around a rotating neutron star. Migratory electrons and positrons are accelerated by the electric field in the gap to radiate copious gamma-rays via curvature process. Some of these gamma-rays materialize as pairs by colliding with the X-rays in the gap, leading to a pair production cascade. Imposing the closure condition that a single pair produces one pair in the gap on average, we explicitly solve the strength of the acceleration field and demonstrate how the peak energy and the luminosity of the curvature-radiated, GeV photons depend on the strength of the surface blackbody and the power-law emissions. Some predictions on the GeV emission from twelve rotation-powered pulsars are presented. We further demonstrate that the expected pulsed TeV fluxes are consistent with their observational upper limits. An implication of high-energy pulse phase width versus pulsar age, spin, and magnetic moment is discussed.Comment: Revised to compute absolute TeV spectra (22 pages, 9 figures

    Super-radiant light scattering from trapped Bose Einstein condensates

    Full text link
    We propose a new formulation for atomic side mode dynamics from super-radiant light scattering of trapped atoms. A detailed analysis of the recently observed super-radiant light scattering from trapped bose gases [S. Inouye {\it et al.}, Science {\bf 285}, 571 (1999)] is presented. We find that scattered light intensity can exhibit both oscillatory and exponential growth behaviors depending on densities, pump pulse characteristics, temperatures, and geometric shapes of trapped gas samples. The total photon scattering rate as well as the accompanied matter wave amplification depends explicitly on atom number fluctuations in the condensate. Our formulation allows for natural and transparent interpretations of subtle features in the MIT data, and provides numerical simulations in good agreement with all aspects of the experimental observations.Comment: 24 pages,16 figures, submitted to Phys.Rev.
    • 

    corecore