91 research outputs found

    Giant magnons and non-maximal giant gravitons

    Full text link
    We produce the open strings on R×S2\mathbb{R}\times S^{2} that correspond to the solutions of integrable boundary sine-Gordon theory by making use of the NN-magnon solutions provided in \cite{KPV} together with explicit moduli. Relating the two boundary parameters in a special way we describe the scattering of giant magnons with non-maximal Y=0Y=0 giant gravitons and calculate the leading contribution to the associated magnon scattering phase.Comment: 34 pages, 8 figure

    A & B model approaches to surface operators and Toda theories

    Get PDF
    It has recently been argued by Alday et al that the inclusion of surface operators in 4d N=2 SU(2) quiver gauge theories should correspond to insertions of certain degenerate operators in the dual Liouville theory. So far only the insertion of a single surface operator has been treated (in a semi-classical limit). In this paper we study and generalise this proposal. Our approach relies on the use of topological string theory techniques. On the B-model side we show that the effects of multiple surface operator insertions in 4d N=2 gauge theories can be calculated using the B-model topological recursion method, valid beyond the semi-classical limit. On the mirror A-model side we find by explicit computations that the 5d lift of the SU(N) gauge theory partition function in the presence of (one or many) surface operators is equal to an A-model topological string partition function with the insertion of (one or many) toric branes. This is in agreement with an earlier proposal by Gukov. Our A-model results were motivated by and agree with what one obtains by combining the AGT conjecture with the dual interpretation in terms of degenerate operators. The topological string theory approach also opens up new possibilities in the study of 2d Toda field theories.Comment: 43 pages. v2: Added references, including a reference to unpublished work by S.Gukov; minor changes and clarifications

    A multisymplectic approach to defects in integrable classical field theory

    Get PDF
    We introduce the concept of multisymplectic formalism, familiar in covariant field theory, for the study of integrable defects in 1+1 classical field theory. The main idea is the coexistence of two Poisson brackets, one for each spacetime coordinate. The Poisson bracket corresponding to the time coordinate is the usual one describing the time evolution of the system. Taking the nonlinear Schr\"odinger (NLS) equation as an example, we introduce the new bracket associated to the space coordinate. We show that, in the absence of any defect, the two brackets yield completely equivalent Hamiltonian descriptions of the model. However, in the presence of a defect described by a frozen B\"acklund transformation, the advantage of using the new bracket becomes evident. It allows us to reinterpret the defect conditions as canonical transformations. As a consequence, we are also able to implement the method of the classical r matrix and to prove Liouville integrability of the system with such a defect. The use of the new Poisson bracket completely bypasses all the known problems associated with the presence of a defect in the discussion of Liouville integrability. A by-product of the approach is the reinterpretation of the defect Lagrangian used in the Lagrangian description of integrable defects as the generating function of the canonical transformation representing the defect conditions

    Mutation analysis of the LCE3B/LCE3C genes in Psoriasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An association between a common deletion comprising the late cornified envelope LCE3B and LCE3C genes (LCE3C_LCE3B-del) and Psoriasis (Ps) has been reported. The expression of these LCE genes was induced after skin barrier disruption and was also strong in psoriatic lesions. The damage to the skin barrier could trigger an epidermal response that includes the expression of genes involved in the formation of skin barrier.</p> <p>Methods</p> <p>We determined the LCE3C_LCE3B-del genotype in 405 Ps patients and 400 healthy controls from a Northern Spain region (Asturias). These patients and controls were also genotyped for the rs4112788 single nucleotide polymorphism, in strong linkage disequilibrium with the LCE3C_B cluster. The LCE3B and LCE3C gene variant was determined in the patients through SSCA, DHPLC, and direct sequencing.</p> <p>Results</p> <p>Allele and genotype frequencies did not differ between patients and controls for the rs4112788 and LCE3C_LCE3B-del polymorphisms. However, del/del homozygotes were significantly higher among patients with chronic plaque type Ps who did not develop arthritis (p = 0.03; OR = 1.4; 95%CI = 1.03-1.92). The analysis of the coding sequence of LCE3B and LCE3C in the patients who had at least one copy of this showed that only one patient has a no previously reported LCE3B variant (R68C).</p> <p>Conclusion</p> <p>Our work suggested that homozygosity for a common LCE3C_LCE3B deletion contributes to the risk of developing chronic plaque type Ps without psoriatic arthritis. Our work confirmed previous reports that described an association of this marker with only skin manifestations, and supported the concept of different genetic risk factors contributing to skin and joint disease.</p

    Position Reconstruction and Charge Distribution in LHCb VELO Silicon Sensors

    Get PDF
    In 2006, a partially equipped LHCb VELO detector half was characterised in a test beam experiment (Alignment Challenge and Detector Commissioning, ACDC3). The position reconstruction and resolution for 2-strip R-sensor clusters was studied as a function of strip pitch and track inclination on the sensor surface. The Charge Density Distribution (CDD) is derived from the weighted charge distribution. It becomes asymmetric for tracks non-perpendicular to the strip surface. It is shown that the asymmetric broadening of the CDD around the track intercept position results in a linear eta-function at higher angles (>6 degrees). The sensor spatial resolution is determined both using a linear weighted mean of strip charges, as well as a third-order polynomial approximation via a eta-correction. The experimental results are in agreement with previous simulations. Future studies are underway to determine the angle and pitch dependent parameters which will be implemented in the LHCb VELO cluster position software tools

    Search for the standard model Higgs boson at LEP

    Get PDF

    ADAM33, a New Candidate for Psoriasis Susceptibility

    Get PDF
    Psoriasis is a chronic skin disorder with multifactorial etiology. In a recent study, we reported results of a genome-wide scan on 46 French extended families presenting with plaque psoriasis. In addition to unambiguous linkage to the major susceptibility locus PSORS1 on Chromosome 6p21, we provided evidence for a susceptibility locus on Chromosome 20p13. To follow up this novel psoriasis susceptibility locus we used a family-based association test (FBAT) for an association scan over the 17 Mb candidate region. A total of 85 uncorrelated SNP markers located in 65 genes of the region were initially investigated in the same set of large families used for the genome wide search, which consisted of 295 nuclear families. When positive association was obtained for a SNP, candidate genes nearby were explored more in detail using a denser set of SNPs. Thus, the gene ADAM33 was found to be significantly associated with psoriasis in this family set (The best association was on a 3-SNP haplotype P = 0.00004, based on 1,000,000 permutations). This association was independent of PSORS1. ADAM33 has been previously associated with asthma, which demonstrates that immune system diseases may be controlled by common susceptibility genes with general effects on dermal inflammation and immunity. The identification of ADAM33 as a psoriasis susceptibility gene identified by positional cloning in an outbred population should provide insights into the pathogenesis and natural history of this common disease

    Characterization of Within-Host Plasmodium falciparum Diversity Using Next-Generation Sequence Data

    Get PDF
    Our understanding of the composition of multi-clonal malarial infections and the epidemiological factors which shape their diversity remain poorly understood. Traditionally within-host diversity has been defined in terms of the multiplicity of infection (MOI) derived by PCR-based genotyping. Massively parallel, single molecule sequencing technologies now enable individual read counts to be derived on genome-wide datasets facilitating the development of new statistical approaches to describe within-host diversity. In this class of measures the FWS metric characterizes within-host diversity and its relationship to population level diversity. Utilizing P. falciparum field isolates from patients in West Africa we here explore the relationship between the traditional MOI and FWS approaches. FWS statistics were derived from read count data at 86,158 SNPs in 64 samples sequenced on the Illumina GA platform. MOI estimates were derived by PCR at the msp-1 and -2 loci. Significant correlations were observed between the two measures, particularly with the msp-1 locus (P = 5.92×10−5). The FWS metric should be more robust than the PCR-based approach owing to reduced sensitivity to potential locus-specific artifacts. Furthermore the FWS metric captures information on a range of parameters which influence out-crossing risk including the number of clones (MOI), their relative proportions and genetic divergence. This approach should provide novel insights into the factors which correlate with, and shape within-host diversity

    Current and Historical Drivers of Landscape Genetic Structure Differ in Core and Peripheral Salamander Populations

    Get PDF
    With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in two core regions (Washington State, United States) versus the species' northern peripheral region (British Columbia, Canada) where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a ‘flat’ landscape), but at the periphery, topography (slope and elevation) had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management
    • …
    corecore