24 research outputs found

    The hypoxia-regulated ectonucleotidase CD73 is a host determinant of HIV latency

    Get PDF
    Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Estimation of Seismic Wave Attenuation from 3D Seismic Data: A Case Study of OBC Data Acquired in an Offshore Oilfield

    No full text
    Previous studies performed in Abu Dhabi oilfields, United Arab Emirates, revealed the direct link of seismic wave attenuation to petrophysical properties of rocks. However, all those studies were based on zero offset VSP data, which limits the attenuation estimation at one location only. This is due to the difficulty of estimating attenuation from 3D seismic data, especially in carbonate rocks. To overcome this difficulty, we developed a workflow based on the centroid frequency shift method and Gabor transform which is optimized by using VSP data. The workflow was applied on 3D Ocean Bottom Cable seismic data. Distinct attenuation anomalies were observed in highly heterogeneous and saturated zones, such as the reservoirs and aquifers. Scattering shows significant contribution in attenuation anomalies, which is unusual in sandstones. This is due to the complex texture and heterogeneous nature of carbonate rocks. Furthermore, attenuation mechanisms such as frictional relative movement between fluids and solid grains, are most likely other important causes of attenuation anomalies. The slight lateral variation of attenuation reflects the lateral homogeneous stratigraphy of the oilfield. The results demonstrate the potential of seismic wave attenuation for delineating heterogeneous zones with high fluid content, which can substantially help for enhancing oil recovery

    The Auto-Combustion Method Synthesized Eu2O3- ZnO Nanostructured Composites for Electronic and Photocatalytic Applications

    No full text
    An efficient and environmentally friendly combustion technique was employed to produce ZnO nanopowders with different Eu concentrations (from 0.001 g to 5 g). The structural morphology of the Eu2O3-ZnO nanocomposites was examined using XRD, SEM, and infrared spectroscopy (FT-IR). In addition, UV-Vis diffuse reflectance spectroscopy was also used to investigate the effects of europium (Eu) dopant on the optical behaviors and energy bandgaps of nano-complex oxides. The photocatalytic degradation efficiency of phenol and methylene blue was investigated using all the prepared Eu2O3-ZnO nanostructured samples. Photocatalytic effectiveness increased when europium (Eu) doping ratios increased. After adding moderate Eu, more hydroxyl radicals were generated over ZnO. The best photocatalyst for phenol degradation was 1 percent Eu2O3-ZnO, while it was 0.5 percent Eu2O3-ZnO for methylene blue solutions. The obtained Eu2O3-doped ZnO nanostructured materials are considered innovative, promising candidates for a wide range of nano-applications, including biomedical and photocatalytic degradation of organic dyes and phenol

    Enhancement in the Structural, Electrical, Optical, and Photocatalytic Properties of La<sub>2</sub>O<sub>3</sub>-Doped ZnO Nanostructures

    No full text
    A lanthanum oxide (La2O3)-ZnO nanostructured material was synthesized in the proposed study with different La2O3 concentrations, 0.001 g to 5 g (named So to S7), using the combustion method. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT-IR) were utilized for investigating the structure, morphology, and spectral studies of the La2O3- ZnO nanomaterials, respectively. The results obtained from previous techniques support ZnO’s growth from crystalline to nanoparticles’ fine structure by changing the concentrations of lanthanum oxide (La2O3) dopants in the host matrix. The percentage of ZnO doped with La- influences the ZnO photocatalytic activity. SEM analysis confirmed the grain size ranged between 81 and 138 nm. Furthermore, UV-Vis diffuse reflectance spectroscopy was performed to verify the effects of La2O3 dopants on the linear optical properties of the nano-composite oxides. There was a variation in the energy bandgaps of La2O3-ZnO nanocomposites, increasing the weight concentrations of lanthanum dopants. The AC electrical conductivity, dielectric properties, and current–voltage properties support the enactment of the electrical characteristics of the ZnO nanoparticles by adding La2O3. All the samples under investigation were used for photodegradation with Rhodamine B (RhB) and Methylene Blue (MB). In less than 30 min of visible light irradiation, S4 (0.5 g) La2O3-ZnO reached 99% of RhB and MB degradation activity. This study showed the best photocatalytic effect for RhB and MB degradation of 0.13 and 0.11 min−1 by 0.5 g La2O3-ZnO. Recycling was performed five times for the nanocatalysts that displayed up to 98 percent catalytic efficiency for RhB and MB degradation in 30 min. The prepared La2O3-ZnO nanostructured composites are considered novel candidates for various applications in biomedical and photocatalytic studies
    corecore