46 research outputs found

    Conception des chaînes logistiques multicritères avec prise en compte des incertitudes

    Get PDF
    Les modèles de conception des chaînes logistiques sont devenus de plus en plus complexes, à cause de l'environnement économique incertain et l'introduction de nouveaux critères de décision tels que : l'aspect environnemental, l'aspect social, l'aspect législatif, l'aspect économique, la satisfaction du client et la prise en compte des risques. Répondre aux changements qui touchent les chaînes logistiques exige de composer avec des incertitudes et des informations incomplètes. Configurer des chaînes logistiques multicritères avec prise en compte des incertitudes peut garantir la continuité des activités de l'entreprise.L'objectif principal de cette thèse est la conception de chaînes logistiques multicritères qui résistent aux changements et l'instabilité des marchés. Le manuscrit de cette thèse s'articule autour de sept principaux chapitres:1 - introduction.2 - Etat de l'art sur la conception des chaînes logistiques.3 -Conception des chaînes logistiques multicritères en mesure de répondre aux nouveauxcritères économiques, sociaux, environnementaux et législatifs.4 - Conception des chaînes logistiques multi-objectifs.5 - Développement d'une heuristique de résolution des problèmes de conception deschaînes logistiques de taille réelle.6 - Conception des chaînes logistiques avec prise en compte des incertitudes.7 - Conclusions et perspectives.This thesis contributes to the debate on how uncertainty and concepts of sustainable development can be put into modern supply chain network and focuses on issues associated with the design of multi-criteria supply chain network under uncertainty. First, we study the literature review , which is a review of the current state of the art of Supply Chain Network Design approaches and resolution methods. Second, we propose a new methodology for multi-criteria Supply Chain Network Design (SCND) as well as its application to real Supply Chain Network (SCN), in order to satisfy the customers demand and respect the environmental, social, legislative, and economical requirements. The methodology consists of two different steps. In the first step, we use Geographic Information System (GIS) and Analytic Hierarchy Process (AHP) to buildthe model. Then, in the second step, we establish the optimal supply chain network using Mixed Integer Linear Programming model (MILP). Third, we extend the MILP to a multi-objective optimization model that captures a compromisebetween the total cost and the environment influence. We use Goal Programming approach seeking to reach the goals placed by Decision Maker. After that, we develop a novel heuristic solution method based on decomposition technique, to solve large scale supply chain network design problems that we failed to solve using exact methods. The heuristic method is tested on real case instances and numerical comparisons show that our heuristic yield high quality solutions in very limited CPU time. Finally, again, we extend the MILP model presented before where we assume that the costumer demands are uncertain. We use two-stage stochastic programming approach to model the supply chain network under demand uncertainty. Then, we address uncertainty in all SC parameters: opening costs, production costs, storage costs and customers demands. We use possibilistic linear programming approach to model the problem and we validate both approaches in a large application case.ARRAS-Bib.electronique (620419901) / SudocSudocFranceF

    Author Correction: Applying federated learning to combat food fraud in food supply chains:Applying federated learning to combat food fraud in food supply chains (npj Science of Food, (2023), 7, 1, (46), 10.1038/s41538-023-00220-3)

    Get PDF
    “In this article the affiliation details for Anand Gavai, Yamine Bouzembrak, Hans J. P. Marvin were incorrectly given as ‘Anand Gavai1, Yamine Bouzembrak2, Hans J. P. Marvin9 ‘, but should have been ‘Anand Gavai1,2, Yamine Bouzembrak2,3, Hans J. P. Marvin2,9’. The original article has been corrected.”</p

    Applying federated learning to combat food fraud in food supply chains

    Get PDF
    Ensuring safe and healthy food is a big challenge due to the complexity of food supply chains and their vulnerability to many internal and external factors, including food fraud. Recent research has shown that Artificial Intelligence (AI) based algorithms, in particularly data driven Bayesian Network (BN) models, are very suitable as a tool to predict future food fraud and hence allowing food producers to take proper actions to avoid that such problems occur. Such models become even more powerful when data can be used from all actors in the supply chain, but data sharing is hampered by different interests, data security and data privacy. Federated learning (FL) may circumvent these issues as demonstrated in various areas of the life sciences. In this research, we demonstrate the potential of the FL technology for food fraud using a data driven BN, integrating data from different data owners without the data leaving the database of the data owners. To this end, a framework was constructed consisting of three geographically different data stations hosting different datasets on food fraud. Using this framework, a BN algorithm was implemented that was trained on the data of different data stations while the data remained at its physical location abiding by privacy principles. We demonstrated the applicability of the federated BN in food fraud and anticipate that such framework may support stakeholders in the food supply chain for better decision-making regarding food fraud control while still preserving the privacy and confidentiality nature of these data

    Digital transformation in the agri-food industry: recent applications and the role of the COVID-19 pandemic

    Get PDF
    Providing food has become more complex because of climate change and other environmental and societal stressors, such as political instability, the growth in the world population, and outbreaks of new diseases, especially the COVID-19 pandemic. In response to these challenges, the agri-food industry has increased its efforts to shift to using more digital tools and other advanced technologies. The transition toward digital has been part of the fourth industrial revolution (called Industry 4.0) innovations that have and are reshaping most industries. This literature review discusses the potential of implementing digital technologies in the agri-food industry, focusing heavily on the role of the COVID-19 pandemic in fostering the adoption of greater digitalization of food supply chains. Examples of the use of these digital innovations for various food applications, and the barriers and challenges will be highlighted. The trend toward digital solutions has gained momentum since the advent of Industry 4.0 and implementations of these solutions have been accelerated by the outbreak of the COVID-19 pandemic. Important digital technology enablers that have high potential for mitigating the negative effects of both the current global health pandemic and the environmental crisis on food systems include artificial intelligence, big data, the Internet of Things, blockchain, smart sensors, robotics, digital twins, and virtual and augmented reality. However, much remains to be done to fully harness the power of Industry 4.0 technologies and achieve widespread implementation of digitalization in the agriculture and food industries

    Global media as an early warning tool for food fraud; an assessment of MedISys-FF

    Get PDF
    Food fraud is a serious problem that may compromise the safety of the food products being sold on the market. Previous studies have shown that food fraud is associated with a large variety of food products and the fraud type may vary from deliberate changing of the food product (i.e. substitution, tampering, dilution etc.) to the manipulation of documents. It is therefore important that all actors within the food supply chain (food producers, authorities), have methodologies and tools available to detect fraudulent products at an early stage so that preventative measures can be taken. Several of such systems exist (i.e. iRASFF, EMA, HorizonScan, AAC-FF, MedISys-FF), but currently only MedISys-FF is publicly online available. In this study, we analyzed food fraud cases collected by MedISys-FF over a 6-year period (2015–2020) and show global trends and developments in food fraud activities. In the period investigated, the system has collected 4375 articles on food fraud incidents from 164 countries in 41 different languages. Fraud with meat and meat products were most frequently reported (27.7%), followed by milk and milk products (10.5%), cereal and bakery products (8.3%), and fish and fish products (7.7%). Most of the fraud was related to expiration date (58.3%) followed by tampering (22.2%) and mislabeling of country of origin (11.4%). Network analysis showed that the focus of the articles was on food products being frauded. The validity of MedISys-FF as an early warning system was demonstrated with COVID- 19. The system has collected articles discussing potential food fraud risks due to the COVID-19 crisis. We therefore conclude that MedISys-FF is a very useful tool to detect early trends in food fraud and may be used by all actors in the food system to ensure safe, healthy, and authentic food

    Citizen Science Data on Urban Forageable Plants:A Case Study in Brazil

    Get PDF
    This paper presents two key data sets derived from the Pomar Urbano project. The first data set is a comprehensive catalog of edible fruit-bearing plant species, native or introduced in Brazil. The second data set, sourced from the iNaturalist platform, tracks the distribution and monitoring of these plants within urban landscapes across Brazil. The study encompasses data from all 27 Brazilian state capitals, focusing on the ten cities that contributed the most observations as of August 2023. The research emphasizes the significance of citizen science in urban biodiversity monitoring and its potential to contribute to various fields, including food and nutrition, creative industry, study of plant phenology, and machine learning applications. We expect the data sets to serve as a resource for further studies in urban foraging, food security, cultural ecosystem services, and environmental sustainability

    Leveraging citizen science for monitoring urban forageable plants

    Get PDF
    Urbanization brings forth social challenges in emerging countries such as Brazil, encompassing food scarcity, health deterioration, air pollution, and biodiversity loss. Despite this, urban areas like the city of São Paulo still boast ample green spaces, offering opportunities for nature appreciation and conservation, enhancing city resilience and livability. Citizen science is a collaborative endeavor between professional scientists and nonprofessional scientists in scientific research that may help to understand the dynamics of urban ecosystems. We believe citizen science has the potential to promote human and nature connection in urban areas and provide useful data on urban biodiversity

    Citizen science data on urban forageable plants:a case study in Brazil

    Get PDF
    This paper presents two key data sets derived from the Pomar Urbano project. The first data set is a comprehensive catalog of edible fruit-bearing plant species, native or introduced to Brazil. The second data set, sourced from the iNaturalist platform, tracks the distribution and monitoring of these plants within urban landscapes across Brazil. The study includes data from the capitals of all 27 federative units of Brazil, focusing on the ten cities that contributed the most observations as of August 2023. The research emphasizes the significance of citizen science in urban biodiversity monitoring and its potential to contribute to various fields, including food and nutrition, creative industry, study of plant phenology, and machine learning applications. We expect the data sets presented in this paper to serve as resources for further studies in urban foraging, food security, cultural ecosystem services, and environmental sustainability

    Conception des chaînes logistiques multicritères avec prise en compte des incertitudes

    No full text
    Les modèles de conception des chaînes logistiques sont devenus de plus en plus complexes, à cause de l'environnement économique incertain et l'introduction de nouveaux critères de décision tels que : l'aspect environnemental, l'aspect social, l'aspect législatif, l'aspect économique, la satisfaction du client et la prise en compte des risques. Répondre aux changements qui touchent les chaînes logistiques exige de composer avec des incertitudes et des informations incomplètes. Configurer des chaînes logistiques multicritères avec prise en compte des incertitudes peut garantir la continuité des activités de l'entreprise.L'objectif principal de cette thèse est la conception de chaînes logistiques multicritères qui résistent aux changements et l'instabilité des marchés. Le manuscrit de cette thèse s'articule autour de sept principaux chapitres:1 - introduction.2 - Etat de l'art sur la conception des chaînes logistiques.3 -Conception des chaînes logistiques multicritères en mesure de répondre aux nouveauxcritères économiques, sociaux, environnementaux et législatifs.4 - Conception des chaînes logistiques multi-objectifs.5 - Développement d'une heuristique de résolution des problèmes de conception deschaînes logistiques de taille réelle.6 - Conception des chaînes logistiques avec prise en compte des incertitudes.7 - Conclusions et perspectives.This thesis contributes to the debate on how uncertainty and concepts of sustainable development can be put into modern supply chain network and focuses on issues associated with the design of multi-criteria supply chain network under uncertainty. First, we study the literature review , which is a review of the current state of the art of Supply Chain Network Design approaches and resolution methods. Second, we propose a new methodology for multi-criteria Supply Chain Network Design (SCND) as well as its application to real Supply Chain Network (SCN), in order to satisfy the customers demand and respect the environmental, social, legislative, and economical requirements. The methodology consists of two different steps. In the first step, we use Geographic Information System (GIS) and Analytic Hierarchy Process (AHP) to buildthe model. Then, in the second step, we establish the optimal supply chain network using Mixed Integer Linear Programming model (MILP). Third, we extend the MILP to a multi-objective optimization model that captures a compromisebetween the total cost and the environment influence. We use Goal Programming approach seeking to reach the goals placed by Decision Maker. After that, we develop a novel heuristic solution method based on decomposition technique, to solve large scale supply chain network design problems that we failed to solve using exact methods. The heuristic method is tested on real case instances and numerical comparisons show that our heuristic yield high quality solutions in very limited CPU time. Finally, again, we extend the MILP model presented before where we assume that the costumer demands are uncertain. We use two-stage stochastic programming approach to model the supply chain network under demand uncertainty. Then, we address uncertainty in all SC parameters: opening costs, production costs, storage costs and customers demands. We use possibilistic linear programming approach to model the problem and we validate both approaches in a large application case
    corecore