17 research outputs found

    Interplay between calcium and sarcomeres directs cardiomyocyte maturation during regeneration

    Get PDF
    Zebrafish hearts can regenerate by replacing damaged tissue with new cardiomyocytes. Although the steps leading up to the proliferation of surviving cardiomyocytes have been extensively studied, little is known about the mechanisms that control proliferation and redifferentiation to a mature state. We found that the cardiac dyad, a structure that regulates calcium handling and excitation-contraction coupling, played a key role in the redifferentiation process. A component of the cardiac dyad called leucine-rich repeat-containing 10 (Lrrc10) acted as a negative regulator of proliferation, prevented cardiomegaly, and induced redifferentiation. We found that its function was conserved in mammalian cardiomyocytes. This study highlights the importance of the underlying mechanisms required for heart regeneration and their application to the generation of fully functional cardiomyocytes.Microbial Biotechnolog

    The people behind the papers – Dennis de Bakker, Mara Bouwman and Jeroen Bakkers

    No full text
    Unlike mammals, adult zebrafish are capable of regenerating their hearts without scarring after injury – a process that has great therapeutic potential. A new paper in Development investigates the role of Prxx1b, a transcription factor that is expressed in epicardial heart tissue after injury, to understand its role in the scar-free regeneration of the adult zebrafish heart. To hear more about the study, we caught up with joint first authors, Dennis De Bakker and Mara Bouwman, and the corresponding author, Jeroen Bakkers, the group leader at the Hubrecht Institute and professor of Molecular Cardiogenetics at the University Medical Center in Utrecht, The Netherlands

    Retinal thickness as a potential biomarker in patients with amyloid-proven early- and late-onset Alzheimer's disease

    No full text
    Introduction: Retinal thickness measured with optical coherence tomography has been proposed as a noninvasive biomarker for Alzheimer's disease (AD). We therefore measured retinal thickness in well-characterized AD and control participants, considering ophthalmological confounders. Methods: We included 57 amyloid-proven AD cases and 85 cognitively normal, amyloid-negative controls. All subjects underwent retinal thickness measurements with spectral domain optical coherence tomography and an ophthalmological assessment to exclude ocular disease. Results: Retinal thickness did not discriminate cases from controls, including stratified analyses for early- versus late-onset AD. We found significant associations between macular thickness and global cortical atrophy [β −0.358; P =.01] and parietal cortical atrophy on magnetic resonance imaging [β −0.371; P <.01] in AD cases. Discussion: In this study, representing the largest optical coherence tomography cohort with amyloid-proven AD cases, we show that retinal thickness does not discriminate AD from controls, despite evident changes on clinical, neuroimaging, and CSF measures, querying the use of retinal thickness measurements as an AD biomarker

    The EMIF-AD PreclinAD study:study design and baseline cohort overview

    No full text
    BACKGROUND: Amyloid pathology is the pathological hallmark in Alzheimer's disease (AD) and can precede clinical dementia by decades. So far it remains unclear how amyloid pathology leads to cognitive impairment and dementia. To design AD prevention trials it is key to include cognitively normal subjects at high risk for amyloid pathology and to find predictors of cognitive decline in these subjects. These goals can be accomplished by targeting twins, with additional benefits to identify genetic and environmental pathways for amyloid pathology, other AD biomarkers, and cognitive decline. METHODS: From December 2014 to October 2017 we enrolled cognitively normal participants aged 60 years and older from the ongoing Manchester and Newcastle Age and Cognitive Performance Research Cohort and the Netherlands Twins Register. In Manchester we included single individuals, and in Amsterdam monozygotic twin pairs. At baseline, participants completed neuropsychological tests and questionnaires, and underwent physical examination, blood sampling, ultrasound of the carotid arteries, structural and resting state functional brain magnetic resonance imaging, and dynamic amyloid positron emission tomography (PET) scanning with [18F]flutemetamol. In addition, the twin cohort underwent lumbar puncture for cerebrospinal fluid collection, buccal cell collection, magnetoencephalography, optical coherence tomography, and retinal imaging. RESULTS: We included 285 participants, who were on average 74.8 ± 9.7 years old, 64% female. Fifty-eight participants (22%) had an abnormal amyloid PET scan. CONCLUSIONS: A rich baseline dataset of cognitively normal elderly individuals has been established to estimate risk factors and biomarkers for amyloid pathology and future cognitive decline
    corecore