42 research outputs found

    Star Formation at z~6: The UDF-Parallel ACS Fields

    Full text link
    We report on the i-dropouts detected in two exceptionally deep ACS fields (B_{435}, V_{606}, i_{775}, and z_{850} with 10 sigma limits of 28.8, 29.0, 28.5, and 27.8, respectively) taken in parallel with the UDF NICMOS observations. Using an i-z>1.4 cut, we find 30 i-dropouts over 21 arcmin^2 down to z_AB=28.1, or 1.4 i-dropouts arcmin^{-2}, with significant field-to-field variation (as expected from cosmic variance). This extends i-dropout searches some ~0.9^m further down the luminosity function than was possible in the GOODS field, netting a ~7x increase in surface density. An estimate of the size evolution for UV bright objects is obtained by comparing the composite radial flux profile of the bright i-dropouts (z<27.2) with scaled versions of the HDF-N + HDF-S U-dropouts. The best-fit is found with a (1+z)^{-1.57_{-0.53} ^{+0.50}} scaling in size (for fixed luminosity), extending lower redshift (1<z<5) trends to z~6. Adopting this scaling and the brighter i-dropouts from both GOODS fields, we make incompleteness estimates and construct a z~6 LF in the rest-frame continuum UV (~1350 A) over a 3.5 magnitude baseline, finding a shape consistent with that found at lower redshift. To evaluate the evolution in the LF from z~3.8, we make comparisons against different scalings of a lower redshift B-dropout sample. Though a strong degeneracy is found between luminosity and density evolution, our best-fit model scales as (1+z)^{-2.8} in number and (1+z)^0.1 in luminosity, suggesting a rest-frame continuum UV luminosity density at z~6 which is just 0.38_{-0.07} ^{+0.09}x that at z~3.8. Our inclusion of size evolution makes the present estimate lower than previous z~6 estimates.Comment: 5 pages, 5 figures, accepted for publication in the Astrophysical Journal Letters, labelling to the left-hand axis of Figure 4 correcte

    Clusters at Half Hubble Time: Galaxy Structure and Colors in RXJ0152.7-1357 and MS1054-03

    Full text link
    We study the photometric and structural properties of spectroscopically confirmed members in the two massive X-ray--selected z=0.83 galaxy clusters MS1054-03 and RXJ0152-1357 using three-band mosaic imaging with the Hubble Space Telescope Advanced Camera for Surveys. The samples include 105 and 140 members of MS1054-03 and RXJ0152-1357, respectively, with ACS F775W magnitude < 24.0. We develop a promising new structural classification method, based on a combination of the best-fit Sersic indices and the normalized root-mean-square residuals from the fits; the resulting classes agree well with the visual ones, but are less affected by galaxy orientation. We examine the color--magnitude relations in detail and find that the color residuals correlate with the local mass density measured from our weak lensing maps; we identify a threshold density of Σ≈0.1\Sigma \approx 0.1, in units of the critical density, above which the star formation appears to cease. For RXJ0152-1357, we also find a trend in the color residuals with velocity, resulting from an offset of about 980 km/s in the mean redshifts of the early- and late-type galaxies. Analysis of the color--color diagrams indicates that a range of star formation time-scales are needed to reproduce the loci of the galaxy colors. We also identify some cluster galaxies whose colors can only be explained by large amounts, AV≈1A_V \approx 1 mag, of internal dust extinction. [Abstract shortened]Comment: 30 pages, emulateapj format; 23 figures, many in color. Accepted by ApJ; scheduled for the 10 June 2006 issue. Some figures degraded; for a higher resolution version, see: http://astro.wsu.edu/blakeslee/z1clusters

    ACS Observations of a Strongly Lensed Arc in a Field Elliptical

    Full text link
    We report the discovery of a strongly lensed arc system around a field elliptical galaxy in Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) images of a parallel field observed during NICMOS observations of the HST Ultra-Deep Field. The ACS parallel data comprise deep imaging in the F435W, F606W, F775W, and F850LP bandpasses. The main arc is at a radius of 1.6 arcsec from the galaxy center and subtends about 120 deg. Spectroscopic follow-up at Magellan Observatory yields a redshift z=0.6174 for the lensing galaxy, and we photometrically estimate z_phot = 2.4\pm0.3 for the arc. We also identify a likely counter-arc at a radius of 0.6 arcsec, which shows structure similar to that seen in the main arc. We model this system and find a good fit to an elliptical isothermal potential of velocity dispersion σ≈300\sigma \approx 300 \kms, the value expected from the fundamental plane, and some external shear. Several other galaxies in the field have colors similar to the lensing galaxy and likely make up a small group.Comment: Accepted for publication in ApJ Letters. 10 pages, 3 figures. Figures have been degraded to meet size limit; a higher resolution version and addtional pictures available at http://acs.pha.jhu.edu/~jpb/UDFparc

    Advanced Camera for Surveys Observations of Young Star Clusters in the Interacting Galaxy UGC 10214

    Full text link
    We present the first Advanced Camera for Surveys (ACS) observations of young star clusters in the colliding/merging galaxy UGC 10214. The observations were made as part of the Early Release Observation (ERO) program for the newly installed ACS during service mission SM3B for the Hubble Space Telescope (HST). Many young star clusters can be identified in the tails of UGC 10214, with ages ranging from ~3 Myr to 10 Myr. The extreme blue V-I (F606W-F814W) colors of the star clusters found in the tail of UGC 10214 can only be explained if strong emission lines are included with a young stellar population. This has been confirmed by our Keck spectroscopy of some of these bright blue stellar knots. The most luminous and largest of these blue knots has an absolute magnitude of M_V = -14.45, with a half-light radius of 161 pc, and if it is a single star cluster, would qualify as a super star cluster (SSC). Alternatively, it could be a superposition of multiple scaled OB associations or clusters. With an estimated age of ~ 4-5 Myr, its derived mass is < 1.3 x 10^6 solar masses. Thus the young stellar knot is unbound and will not evolve into a normal globular cluster. The bright blue clusters and associations are much younger than the dynamical age of the tail, providing strong evidence that star formation occurs in the tail long after it was ejected. UGC 10214 provides a nearby example of processes that contributed to the formation of halos and intra-cluster media in the distant and younger Universe.Comment: 6 pages with embedded figures, ApJ in pres

    Star Formation at z~6: i-dropouts in the ACS GTO fields

    Full text link
    Using an i-z dropout criterion, we determine the space density of z~6 galaxies from two deep ACS GTO fields with deep optical-IR imaging. A total of 23 objects are found over 46 arcmin^2, or ~0.5 objects/arcmin^2 down to z~27.3 (6 sigma; all AB mag) (including one probable z~6 AGN). Combining deep ISAAC data for our RDCS1252-2927 field (J~25.7 and Ks~25.0 (5 sigma)) and NICMOS data for the HDF North (JH~27.3 (5 sigma)), we verify that these dropouts have flat spectral slopes. i-dropouts in our sample range in luminosity from ~1.5 L* (z~25.6) to ~0.3 L* (z~27.3) with the exception of one very bright candidate at z~24.2. The half-light radii vary from 0.09" to 0.29", or 0.5 kpc to 1.7 kpc. We derive the z~6 rest-frame UV luminosity density using three different procedures, each utilizing simulations based on a CDF South V dropout sample. First, we compare our findings with a no-evolution projection of this V-dropout sample. We find 23+/-25% more i-dropouts than we predict. Adopting previous results to z~5, this works out to a 20+/-29% drop in the luminosity density from z~3 to z~6. Second, we use these same V-dropout simulations to derive a selection function for our i-dropout sample and compute the UV-luminosity density (7.2+/-2.5 x 10^25 ergs/s/Hz/Mpc^3 down to z~27). We find a 39+/-21% drop over the same redshift range. This is our preferred value and suggests a star formation rate of 0.0090+/-0.0031 M_sol/yr/Mpc^3 to z~27, or ~0.036+/- 0.012 M_sol/yr/Mpc^3 extrapolating the LF to the faint limit. Third, we follow a very similar procedure, but assume no incompleteness, finding a luminosity density which is ~2-3X lower. This final estimate constitutes a lower limit. All three estimates are within the canonical range of luminosity densities necessary for reionization of the universe at this epoch. (abridged)Comment: 36 pages, 13 figures, 2 tables, accepted for publication in ApJ, postscript version with high-resolution figures can be downloaded at http://www.ucolick.org/~bouwens/idropout.p

    UV Luminosity Functions from 132 z~7 and z~8 Lyman-Break Galaxies in the ultra-deep HUDF09 and wide-area ERS WFC3/IR Observations

    Full text link
    We identify 73 z~7 and 59 z~8 candidate galaxies in the reionization epoch, and use this large 26-29.4 AB mag sample of galaxies to derive very deep luminosity functions to <-18 AB mag and the star formation rate density at z~7 and z~8. The galaxy sample is derived using a sophisticated Lyman-Break technique on the full two-year WFC3/IR and ACS data available over the HUDF09 (~29.4 AB mag, 5 sigma), two nearby HUDF09 fields (~29 AB mag, 14 arcmin) and the wider area ERS (~27.5 AB mag) ~40 arcmin**2). The application of strict optical non-detection criteria ensures the contamination fraction is kept low (just ~7% in the HUDF). This very low value includes a full assessment of the contamination from lower redshift sources, photometric scatter, AGN, spurious sources, low mass stars, and transients (e.g., SNe). From careful modelling of the selection volumes for each of our search fields we derive luminosity functions for galaxies at z~7 and z~8 to <-18 AB mag. The faint-end slopes alpha at z~7 and z~8 are uncertain but very steep at alpha = -2.01+/-0.21 and alpha=-1.91+/-0.32, respectively. Such steep slopes contrast to the local alpha<~-1.4 and may even be steeper than that at z~4 where alpha=-1.73+/-0.05. With such steep slopes (alpha<~-1.7) lower luminosity galaxies dominate the galaxy luminosity density during the epoch of reionization. The star formation rate densities derived from these new z~7 and z~8 luminosity functions are consistent with the trends found at later times (lower redshifts). We find reasonable consistency, with the SFR densities implied from reported stellar mass densities, being only ~40% higher at z<7. This suggests that (1) the stellar mass densities inferred from the Spitzer IRAC photometry are reasonably accurate and (2) that the IMF at very high redshift may not be very different from that at later times.Comment: 38 pages, 21 figures, 20 tables, ApJ, accepted for publicatio

    Internal Color Properties of Resolved Spheroids in the Deep HST/ACS field of UGC 10214

    Full text link
    (Abridged) We study the internal color properties of a morphologically selected sample of spheroidal galaxies taken from HST/ACS ERO program of UGC 10214 (``The Tadpole''). By taking advantage of the unprecedented high resolution of the ACS in this very deep dataset we are able to characterize spheroids at sub-arcseconds scales. Using the V_606W and I_814W bands, we construct V-I color maps and extract color gradients for a sample of spheroids at I_814W < 24 mag. We investigate the existence of a population of morphologically classified spheroids which show extreme variation in their internal color properties similar to the ones reported in the HDFs. These are displayed as blue cores and inverse color gradients with respect to those accounted from metallicity variations. Following the same analysis we find a similar fraction of early-type systems (~30%-40%) that show non-homologous internal colors, suggestive of recent star formation activity. We present two statistics to quantify the internal color variation in galaxies and for tracing blue cores, from which we estimate the fraction of non-homogeneous to homogeneous internal colors as a function of redshift up to z<1.2. We find that it can be described as about constant as a function of redshift, with a small increase with redshift for the fraction of spheroids that present strong color dispersions. The implications of a constant fraction at all redshifts suggests the existence of a relatively permanent population of evolving spheroids up to z~1. We discuss the implications of this in the context of spheroidal formation.Comment: Fixed URL for high resolution version. 13 Pages, 10 Figures. Accepted for Publication in ApJ. Sep 1st issue. Higher resolution version and complete table3B at http://acs.pha.jhu.edu/~felipe/e-prints/Tadpol

    An Observational Test for the Anthropic Origin of the Cosmological Constant

    Full text link
    The existence of multiple regions of space beyond the observable Universe (within the so-called "multiverse") where the vacuum energy density takes different values, has been postulated as an explanation for the low non-zero value observed for it in our Universe. It is often argued that our existence pre-selects regions where the cosmological constant is sufficiently small to allow galaxies like the Milky Way to form and intelligent life to emerge. Here we propose a simple empirical test for this anthropic argument within the boundaries of the observable Universe. We make use of the fact that dwarf galaxies formed in our Universe at redshifts as high as z~10 when the mean matter density was larger by a factor of ~10^3 than today. Existing technology enables to check whether planets form in nearby dwarf galaxies and globular clusters by searching for microlensing or transit events of background stars. The oldest of these nearby systems may have formed at z~10. If planets are as common per stellar mass in these descendents as they are in the Milky Way galaxy, then the anthropic argument would be weakened considerably since planets could have formed in our Universe even if the cosmological constant was three orders of magnitude larger than observed. For a flat probability distribution, this would imply that the probability for us to reside in a region where the cosmological constant obtains its observed value is lower than \~10^{-3}. A precise version of the anthropic argument could then be ruled-out at a confidence level of ~99.9%, which constitutes a satisfactory measure of a good experimental test.Comment: JCAP, in pres

    The Luminosity Function of Early-Type Galaxies at z~0.75

    Full text link
    We measure the luminosity function of morphologically selected E/S0 galaxies from z=0.5z=0.5 to z=1.0z=1.0 using deep high resolution Advanced Camera for Surveys imaging data. Our analysis covers an area of 48\Box\arcmin (8×\times the area of the HDF-N) and extends 2 magnitudes deeper (I∌24I\sim24 mag) than was possible in the Deep Groth Strip Survey (DGSS). At 0.5<z<0.750.5<z<0.75, we find MB∗−5log⁥h0.7=−21.1±0.3M_B^*-5\log h_{0.7}=-21.1\pm0.3 and α=−0.53±0.2\alpha=-0.53\pm0.2, and at 0.75<z<1.00.75<z<1.0, we find MB∗−5log⁥h0.7=−21.4±0.2M_B^*-5\log h_{0.7}=-21.4\pm0.2. These luminosity functions are similar in both shape and number density to the luminosity function using morphological selection (e.g., DGSS), but are much steeper than the luminosity functions of samples selected using morphological proxies like the color or spectral energy distribution (e.g., CFRS, CADIS, or COMBO-17). The difference is due to the `blue', (U−V)0<1.7(U-V)_0<1.7, E/S0 galaxies, which make up to ∌30\sim30% of the sample at all magnitudes and an increasing proportion of faint galaxies. We thereby demonstrate the need for {\it both morphological and structural information} to constrain the evolution of galaxies. We find that the `blue' E/S0 galaxies have the same average sizes and Sersic parameters as the `red', (U−V)0>1.7(U-V)_0>1.7, E/S0 galaxies at brighter luminosities (MB<−20.1M_B<-20.1), but are increasingly different at fainter magnitudes where `blue' galaxies are both smaller and have lower Sersic parameters. Fits of the colors to stellar population models suggest that most E/S0 galaxies have short star-formation time scales (τ<1\tau<1 Gyr), and that galaxies have formed at an increasing rate from z∌8z\sim8 until z∌2z\sim2 after which there has been a gradual decline.Comment: 39 pages, 21 figures, accepted in A

    The Morphology - Density Relation in z ~ 1 Clusters

    Full text link
    We measure the morphology--density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys on board the Hubble Space Telescope. Simulations and independent comparisons of ourvisually derived morphologies indicate that ACS allows one to distinguish between E, S0, and spiral morphologies down to zmag = 24, corresponding to L/L* = 0.21 and 0.30 at z = 0.83 and z = 1.24, respectively. We adopt density and radius estimation methods that match those used at lower redshift in order to study the evolution of the MDR and MRR. We detect a change in the MDR between 0.8 < z < 1.2 and that observed at z ~ 0, consistent with recent work -- specifically, the growth in the bulge-dominated galaxy fraction, f_E+SO, with increasing density proceeds less rapidly at z ~ 1 than it does at z ~ 0. At z ~ 1 and density <= 500 galaxies/Mpc^2, we find = 0.72 +/- 0.10. At z ~ 0, an E+S0 population fraction of this magnitude occurs at densities about 5 times smaller. The evolution in the MDR is confined to densities >= 40 galaxies/Mpc^2 and appears to be primarily due to a deficit of S0 galaxies and an excess of Spiral+Irr galaxies relative to the local galaxy population. The Elliptical fraction - density relation exhibits no significant evolution between z = 1 and z = 0. We find mild evidence to suggest that the MDR is dependent on the bolometric X-ray luminosity of the intracluster medium. Implications for the evolution of the disk galaxy population in dense regions are discussed in the context of these observations.Comment: 30 pages, 18 figures. Accepted for publication in ApJ. Full resolution versions of figs 2,3,6,8 are available at http://www.stsci.edu/~postman/mdr_figure
    corecore