987 research outputs found

    Theory for Magnetic Anisotropy of Field-Induced Insulator-to-Metal Transition in Cubic Kondo Insulator YbB_{12}

    Get PDF
    Magnetization and energy gap of Kondo insulator YbB_{12} are calculated theoretically based on the previously proposed tight-binding model composed of Yb 5dϵ\epsilon and 4f Γ8\Gamma_8 orbitals. It is found that magnetization curves are almost isotropic, naturally expected from the cubic symmetry, but that the gap-closing field has an anisotropy: the gap closes faster for the field in (100) direction than in (110) and (111) directions, in accord with the experiments. This is qualitatively understood by considering the maximal eigenvalues of the total angular momentum operators projected on each direction of the magnetic field. But the numerical calculation based on the band model yields better agreement with the experiment.Comment: 4 pages, 4 figures, to appear in J. Phys. Soc. Jp

    BOSS-LDG: A Novel Computational Framework that Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery

    Get PDF
    We present a novel computational framework that connects Blue Waters, the NSF-supported, leadership-class supercomputer operated by NCSA, to the Laser Interferometer Gravitational-Wave Observatory (LIGO) Data Grid via Open Science Grid technology. To enable this computational infrastructure, we configured, for the first time, a LIGO Data Grid Tier-1 Center that can submit heterogeneous LIGO workflows using Open Science Grid facilities. In order to enable a seamless connection between the LIGO Data Grid and Blue Waters via Open Science Grid, we utilize Shifter to containerize LIGO's workflow software. This work represents the first time Open Science Grid, Shifter, and Blue Waters are unified to tackle a scientific problem and, in particular, it is the first time a framework of this nature is used in the context of large scale gravitational wave data analysis. This new framework has been used in the last several weeks of LIGO's second discovery campaign to run the most computationally demanding gravitational wave search workflows on Blue Waters, and accelerate discovery in the emergent field of gravitational wave astrophysics. We discuss the implications of this novel framework for a wider ecosystem of Higher Performance Computing users.Comment: 10 pages, 10 figures. Accepted as a Full Research Paper to the 13th IEEE International Conference on eScienc

    Yb-Yb correlations and crystal-field effects in the Kondo insulator YbB12 and its solid solutions

    Full text link
    We have studied the effect of Lu substitution on the spin dynamics of the Kondo insulator YbB12 to clarify the origin of the spin-gap response previously observed at low temperature in this material. Inelastic neutron spectra have been measured in Yb1-xLuxB12 compounds for four Lu concentrations x = 0, 0.25, 0.90 and 1.0. The data indicate that the disruption of coherence on the Yb sublattice primarily affects the narrow peak structure occurring near 15-20 meV in pure YbB12, whereas the spin gap and the broad magnetic signal around 38 meV remain almost unaffected. It is inferred that the latter features reflect mainly local, single-site processes, and may be reminiscent of the inelastic magnetic response reported for mixed-valence intermetallic compounds. On the other hand, the lower component at 15 meV is most likely due to dynamic short-range magnetic correlations. The crystal-field splitting in YbB12 estimated from the Er3+ transitions measured in a Yb0.9Er0.1B12 sample, has the same order of magnitude as other relevant energy scales of the system and is thus likely to play a role in the form of the magnetic spectral response.Comment: 16 pages in pdf format, 9 figures. v. 2: coauthor list updated; extra details given in section 3.2 (pp. 6-7); one reference added; fig. 5 axis label change

    Indirect and direct energy gaps in the Kondo semiconductor YbB12

    Full text link
    Optical conductivity [σ(ω)\sigma(\omega)] of the Kondo semiconductor YbB12_{12} has been measured over wide ranges of temperature (TT=8-690 K) and photon energy (ω\hbar \omega \geq 1.3 meV). The σ(ω)\sigma(\omega) data reveal the entire crossover of YbB12_{12} from a metallic electronic structure at high TT into a semiconducting one at low TT. Associated with the gap development in σ(ω)\sigma(\omega), a clear onset is newly found at ω\hbar\omega=15 meV for TT \leq 20 K. The onset energy is identified as the gap width of YbB12_{12} appearing in σ(ω)\sigma(\omega). This gap in \sigma(\omega)isinterpretedastheindirectgap,whichhasbeenpredictedinthebandmodelofKondosemiconductor.Ontheotherhand,thestrongmidinfrared(mIR)peakobservedin is interpreted as the indirect gap, which has been predicted in the band model of Kondo semiconductor. On the other hand, the strong mid-infrared (mIR) peak observed in \sigma(\omega)$ is interpreted as arising from the direct gap. The absorption coefficient around the onset and the mIR peak indeed show characteristic energy dependences expected for indirect and direct optical transitions in conventional semiconductors.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp

    Formation Mechanism of Hybridization Gap in Kondo Insulators based on a Realistic Band Model and Application to YbB12_{12}

    Get PDF
    A new LDA+U band calculation is performed on the Kondo insulator material YbB12_{12} and an energy gap of about 0.001Ryd is obtained. Based on this, a simple tight-binding model with 5dϵ\epsilon and 4f Γ8\Gamma_8 orbitals on Yb atoms and the nearest neighbor σ\sigma-bonds between them is constructed with a good agreement to the above the LDA+U calculation near the gap. The density of states is also calculated and the shape is found to be very asymmetric with respect to the gap. A formation mechanism of the gap is clarified for the first time in a realistic situation with the orbital degeneracies in both conduction bands and the f states. This model can be a useful starting point for incorporating the strong correlation effect, and for understanding all the thermal, thermoelectric, transport and magnetic properties of YbB12_{12}.Comment: 15 pages, 15 figures, to appear in J. Phys. Soc. Jpn. Vol. 72 No. 5 (2003

    Excitonic Bound State in the Extended Anderson Model with c-f Coulomb Interaction

    Full text link
    The Anderson model with the Coulomb interaction between the local and conduction electrons is studied in the semiconducting phase. Based on a perturbation theory from the atomic limit, leading contributions for the c-f Coulomb interaction are incorporated as a vertex correction to hybridization. An analytical solution shows that the effective attraction in the intermediate states leads to a bound state localized at the local electron site. Self-consistent equations are constructed as an extension of the non-crossing approximation (NCA) to include the vertex part yielding the bound state. A numerical calculation demonstrates the excitonic bound state inside the semiconducting gap for single-particle excitations, and a discontinuity at the gap edge for magnetic excitations.Comment: 15 pages, 20 figures, submitted to J. Phys. Soc. Jp

    Acoustic TAG tracking: First experiments

    Get PDF
    Nowadays, the use of autonomous vehicles for ocean research has increased, since these vehicles have a better cost/performance ratio than crewed vessels or oceanographic ships. For example, autonomous surface vehicles can be used to localize underwater targets. Whereas different research works are focused in target tracking using acoustic modems (or USBL), in this paper a new method called Area-Only target tracking is presented, which uses the signal generated by acoustic TAGs. This document, the first tests are presented and their results discussed, which were conducted in the Monterey Bay.Peer ReviewedPostprint (published version

    Damage analysis and fracture toughness evaluation in a thin woven composite laminate under static tension using infrared thermography

    Get PDF
    This work deals with the issue of damage growth in thin woven composite laminates subjected to tensile loading. The conducted tensile tests were monitored on-line with an infrared camera, and tested specimens were analysed using Scanning Electron Microscopy (SEM). Combined with SEM micrographs, observation of heat source fields enabled us to assess the damage sequence. Transverse weft cracking was confirmed to be the main damage mode and fiber breakage was the final damage leading to failure. For cracks which induce little variation of specimen stiffness, the classic “Compliance method” could not be used to compute energy release rate. Hence, we present here a new procedure based on the estimation of heat source fields to calculate the energy release rate associated with transverse weft cracking. The results are then compared to those computed with a simple 3D inverse model of the heat diffusion problem and those presented in the literature

    The design of avalanche protection dams : Recent practical and theoretical developments

    Get PDF
    This book discusses the design of dams and other protective measures in the run-out zones of wet- and dry-snow avalanches. It summarises recent theoretical developments and the results of field and laboratory studies, combining them with traditional design guidelines and principles to formulate design recommendations. Not discussed are hazard zoning, land use planning, evacuations, supporting structures in starting zones, snow fences in catchment areas, and other safety measures outside the run-out zone. Reinforcement of individual buildings also falls outside the scope of the book, as do protective measures against landslides and slushflows.European Comissio
    corecore