9 research outputs found

    CompGO: an R package for comparing and visualizing gene ontology enrichment differences between DNA binding experiments

    Get PDF
    Background: Gene ontology (GO) enrichment is commonly used for inferring biological meaning from systems biology experiments. However, determining differential GO and pathway enrichment between DNA-binding experiments or using the GO structure to classify experiments has received little attention. Results: Herein, we present a bioinformatics tool, CompGO, for identifying Differentially Enriched Gene Ontologies, called DiEGOs, and pathways, through the use of a z-score derivation of log odds ratios, and visualizing these differences at GO and pathway level. Through public experimental data focused on the cardiac transcription factor NKX2-5, we illustrate the problems associated with comparing GO enrichments between experiments using a simple overlap approach. Conclusions: We have developed an R/Bioconductor package, CompGO, which implements a new statistic normally used in epidemiological studies for performing comparative GO analyses and visualizing comparisons from .BED data containing genomic coordinates as well as gene lists as inputs. We justify the statistic through inclusion of experimental data and compare to the commonly used overlap method. CompGO is freely available as a R/Bioconductor package enabling easy integration into existing pipelines and is available at: http://www.bioconductor.org/packages/release/bioc/html/CompGO.html packages/release/bioc/html/CompGO.htm

    Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development

    No full text
    Seed development in angiosperms initiates after double fertilization, leading to the formation of a diploid embryo and a triploid endosperm. The active repression of precocious initiation of certain aspects of seed development in the absence of fertilization requires the Polycomb group proteins MEDEA (MEA), FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) and FERTILIZATION-INDEPENDENT SEED2. Here we show that the Arabidopsis WD-40 domain protein MSI1 is present together with MEA and FIE in a 600 kDa complex and interacts directly with FIE. Mutant plants heterozygous for msi1 show a seed abortion ratio of 50% with seeds aborting when the mutant allele is maternally inherited, irrespective of a paternal wild-type or mutant MSI1 allele. Further more, msi1 mutant gametophytes initiate endosperm development in the absence of fertilization at a high penetrance. After pollination, only the egg cell becomes fertilized, the central cell starts dividing prior to fertilization, resulting in the formation of seeds containing embryos surrounded by diploid endosperm. Our results establish that MSI1 has an essential function in the correct initiation and progression of seed development

    Analysis of steric effects in DamID profiling of transcription factor target genes

    No full text
    DNA adenine methyltransferase identification (DamID) is an enzymatic technology for detecting DNA regions targeted by chromatin-associated proteins. Proteins are fused to bacterial DNA adenine methyltransferase (Dam) and expressed in cultured cells or whole organisms. Here, we used DamID to detect DNA regions bound by the cardiac-restricted transcription factors (TFs) NKX2-5 and SRF, and ubiquitously-expressed co-factors ELK1 and ELK4. We compared targets bound by these TFs as N- and C-terminal fusions with Dam, for both wild type (WT) NKX2-5 and mutant proteins mimicking those found in congenital heart disease. Overall, DamID is highly robust: while the orientation of WT Dam fusions can affect the size of the target sets, their signatures remained largely reproducible. Furthermore, a severe NKX2-5 mutant lacking the homeodomain showed strong steric effects negatively impacting target discovery. The extent of steric effect is likely to be dependent on the protein in question and the orientation of Dam fusion

    NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets

    Get PDF
    We take a functional genomics approach to congenital heart disease mechanism. We used DamID to establish a robust set of target genes for NKX2-5 wild type and disease associated NKX2-5 mutations to model loss-of-function in gene regulatory networks. NKX2-5 mutants, including those with a crippled homeodomain, bound hundreds of targets including NKX2-5 wild type targets and a unique set of "off-targets", and retained partial functionality. NKXΔHD, which lacks the homeodomain completely, could heterodimerize with NKX2-5 wild type and its cofactors, including E26 transformationspecific (ETS) family members, through a tyrosine-rich homophilic interaction domain (YRD). Off-targets of NKX2-5 mutants, but not those of an NKX2-5 YRD mutant, showed overrepresentation of ETS binding sites and were occupied by ETS proteins, as determined by DamID. Analysis of kernel transcription factor and ETS targets show that ETS proteins are highly embedded within the cardiac gene regulatory network. Our study reveals binding and activities of NKX2-5 mutations on WT target and off-targets, guided by interactions with their normal cardiac and general cofactors, and suggest a novel type of gainof- function in congenital heart disease.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A novel conditional mouse model for Nkx2-5 reveals transcriptional regulation of cardiac ion channels.

    No full text
    Nkx2-5 is one of the master regulators of cardiac development, homeostasis and disease. This transcription factor has been previously associated with a suite of cardiac congenital malformations and impairment of electrical activity. When disease causative mutations in transcription factors are considered, NKX2-5 gene dysfunction is the most common abnormality found in patients. Here we describe a novel mouse model and subsequent implications of Nkx2-5 loss for aspects of myocardial electrical activity. In this work we have engineered a new Nkx2-5 conditional knockout mouse in which flox sites flank the entire Nkx2-5 locus, and validated this line for the study of heart development, differentiation and disease using a full deletion strategy. While our homozygous knockout mice show typical embryonic malformations previously described for the lack of the Nkx2-5 gene, hearts of heterozygous adult mice show moderate morphological and functional abnormalities that are sufficient to sustain blood supply demands under homeostatic conditions. This study further reveals intriguing aspects of Nkx2-5 function in the control of cardiac electrical activity. Using a combination of mouse genetics, biochemistry, molecular and cell biology, we demonstrate that Nkx2-5 regulates the gene encoding Kcnh2 channel and others, shedding light on potential mechanisms generating electrical abnormalities observed in patients bearing NKX2-5 dysfunction and opening opportunities to the study of novel therapeutic targets for anti-arrhythmogenic therapies. Differentiation 2016 Jan-Mar; 91(1-3):29-41

    NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets

    Get PDF
    We take a functional genomics approach to congenital heart disease mechanism. We used DamID to establish a robust set of target genes for NKX2-5 wild type and disease associated NKX2-5 mutations to model loss-of-function in gene regulatory networks. NKX2-5 mutants, including those with a crippled homeodomain, bound hundreds of targets including NKX2-5 wild type targets and a unique set of "off-targets", and retained partial functionality. NKXΔHD, which lacks the homeodomain completely, could heterodimerize with NKX2-5 wild type and its cofactors, including E26 transformationspecific (ETS) family members, through a tyrosine-rich homophilic interaction domain (YRD). Off-targets of NKX2-5 mutants, but not those of an NKX2-5 YRD mutant, showed overrepresentation of ETS binding sites and were occupied by ETS proteins, as determined by DamID. Analysis of kernel transcription factor and ETS targets show that ETS proteins are highly embedded within the cardiac gene regulatory network. Our study reveals binding and activities of NKX2-5 mutations on WT target and off-targets, guided by interactions with their normal cardiac and general cofactors, and suggest a novel type of gainof- function in congenital heart disease.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore