19 research outputs found

    Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals With Steatohepatitis

    Get PDF
    The intestinal microbiota has been linked to the development and prevalence of steatohepatitis in humans. Interestingly, steatohepatitis is significantly lower in individuals taking a plant-based, low-animal-protein diet, which is thought to be mediated by gut microbiota. However, data on causality between these observations in humans is scarce. In this regard, fecal microbiota transplantation (FMT) using healthy donors is safe and is capable of changing microbial composition in human disease. We therefore performed a double-blind randomized controlled proof-of-principle study in which individuals with hepatic steatosis on ultrasound were randomized to two study arms: lean vegan donor (allogenic n = 10) or own (autologous n = 11) FMT. Both were performed three times at 8-week intervals. A liver biopsy was performed at baseline and after 24 weeks in every subject to determine histopathology (Nonalcoholic Steatohepatitis Clinical Research Network) classification and changes in hepatic gene expression based on RNA sequencing. Secondary outcome parameters were changes in intestinal microbiota composition and fasting plasma metabolomics. We observed a trend toward improved necro-inflammatory histology, and found significant changes in expression of hepatic genes involved in inflammation and lipid metabolism following allogenic FMT. Intestinal microbial community structure changed following allogenic FMT, which was associated with changes in plasma metabolites as well as markers of .Conclusion:Allogenic FMT using lean vegan donors in individuals with hepatic steatosis shows an effect on intestinal microbiota composition, which is associated with beneficial changes in plasma metabolites and markers of steatohepatitis.Peer reviewe

    Intestinal Ralstonia pickettii augments glucose intolerance in obesity

    Get PDF
    An altered intestinal microbiota composition has been implicated in the pathogenesis of metabolic disease including obesity and type 2 diabetes mellitus (T2DM). Low grade inflammation, potentially initiated by the intestinal microbiota, has been suggested to be a driving force in the development of insulin resistance in obesity. Here, we report that bacterial DNA is present in mesenteric adipose tissue of obese but otherwise healthy human subjects. Pyrosequencing of bacterial 16S rRNA genes revealed that DNA from the Gram-negative species Ralstonia was most prevalent. Interestingly, fecal abundance of Ralstonia pickettii was increased in obese subjects with pre-diabetes and T2DM. To assess if R. pickettii was causally involved in development of obesity and T2DM, we performed a proof-of-concept study in diet-induced obese (DIO) mice. Compared to vehicle-treated control mice, R. pickettii-treated DIO mice had reduced glucose tolerance. In addition, circulating levels of endotoxin were increased in R. pickettii-treated mice. In conclusion, this study suggests that intestinal Ralstonia is increased in obese human subjects with T2DM and reciprocally worsens glucose tolerance in DIO mice.Peer reviewe

    Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition

    Get PDF
    The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.Peer reviewe

    Insights into the role of the microbiome in obesity and type 2 diabetes

    No full text
    The worldwide prevalence of obesity and type 2 diabetes mellitus (T2DM) continues to rise at an alarming pace. Recently the potential role of the gut microbiome in these metabolic disorders has been identified. Obesity is associated with changes in the composition of the intestinal microbiota, and the obese microbiome seems to be more efficient in harvesting energy from the diet. Lean male donor fecal microbiota transplantation (FMT) in males with metabolic syndrome resulted in a significant improvement in insulin sensitivity in conjunction with an increased intestinal microbial diversity, including a distinct increase in butyrate-producing bacterial strains. Such differences in gut microbiota composition might function as early diagnostic markers for the development of T2DM in high-risk patients. Products of intestinal microbes such as butyrate may induce beneficial metabolic effects through enhancement of mitochondrial activity, prevention of metabolic endotoxemia, and activation of intestinal gluconeogenesis via different routes of gene expression and hormone regulation. Future research should focus on whether bacterial products (like butyrate) have the same effects as the intestinal bacteria that produce it, in order to ultimately pave the way for more successful interventions for obesity and T2DM. The rapid development of the currently available techniques, including use of fecal transplantations, has already shown promising results, so there is hope for novel therapies based on the microbiota in the futur

    Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction

    No full text
    The potential role of intestinal microbiota in the etiology of various human diseases has attracted massive attention in the last decade. As such, the intestinal microbiota has been advanced as an important contributor in the development of obesity and obesity-related metabolic dysfunctions, amongst others. Experiments in animal models have produced evidence for a causal role of intestinal microbiota in the etiology of obesity and insulin resistance. However, with a few exceptions, such causal relation is lacking for humans and most publications merely report associations between intestinal microbial composition and metabolic disorders such as obesity and type 2 diabetes. Thus, the reciprocal relationship between the bacteria and these metabolic disorders remains a matter of debate. The main objective of this review is to critically assess the driving role of intestinal microbe composition in the etiology, prevention, and treatment of obesity and obesity-related metabolic dysfunction, including type 2 diabetes

    The effect of dapagliflozin on apolipoprotein B and glucose fluxes in patients with type 2 diabetes and well-controlled plasma LDL cholesterol

    No full text
    Aim: To dissect the effects of the sodium-glucose linked transporter 2 inhibitor dapagliflozin on lipid metabolism and assess whether these effects could potentially offset cardiovascular benefit with this drug-class. Materials and Methods: We assessed the effect of dapagliflozin on lipid metabolism in 11 adults with uncomplicated type 2 diabetes. After 4 weeks of statin wash-out and 4 weeks of rosuvastatin 10 mg treatment, participants were treated with dapagliflozin 10 mg once-daily for 5 weeks. Before and after dapagliflozin, plasma lipids were measured and very low-density lipoprotein (VLDL)-1 and VLDL-2 apolipoprotein (Apo)B fluxes were assessed using (5.5.5-2H3)-leucine tracer infusion. In addition, hepatic and peripheral insulin sensitivity as well as insulin-mediated inhibition of peripheral lipolysis were measured during a two-step hyperinsulinemic-euglycaemic clamp using (6,6-2H2)-glucose and (1,1,2,3,3-2H5)-glycerol tracers. Results: Rosuvastatin decreased all plasma lipids significantly: total cholesterol from 4.5 (3.2–6.2) to 3.1 (2.5–3.8) mmol/L, LDL cholesterol from 2.6 (1.7–3.4) to 1.5 (1.1–2.2) mmol/L, HDL cholesterol from 1.34 (0.80–2.02) to 1.19 (0.74–1.89) mmol/L and triglycerides from 0.92 (0.31–3.91) to 0.79 (0.32–2.10) mmol/L. The addition of dapaglifozin to rosuvastatin did not raise either LDL cholesterol or total cholesterol, and only increased HDL cholesterol by 0.08 (−0.03–0.13) mmol/L (P = 0.03). In line with this, dapagliflozin did not affect VLDL-1 or VLDL-2 ApoB fluxes. Fasting endogenous glucose production tended to increase by 0.9 (−3.4–3.1) μmol kg−1 min−1 (P = 0.06), but no effect on hepatic and peripheral insulin sensitivity or on peripheral lipolysis was observed. Conclusions: Dapagliflozin has no effect on plasma LDL-cholesterol levels or VLDL-apoB fluxes in the context of optimal lipid-lowering treatment, which will thus not limit cardiovascular benefit when lipids are adequately controlled

    Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography

    No full text
    Trillions of microorganisms inhabit the human gut and are regarded as potential key factors for health1,2. Characteristics such as diet, lifestyle, or genetics can shape the composition of the gut microbiota2–6 and are usually shared by individuals from comparable ethnic origin. So far, most studies assessing how ethnicity relates to the intestinal microbiota compared small groups living at separate geographical locations7–10. Using fecal 16S ribosomal RNA gene sequencing in 2,084 participants of the Healthy Life in an Urban Setting (HELIUS) study11,12, we show that individuals living in the same city tend to share similar gut microbiota characteristics with others of their ethnic background. Ethnicity contributed to explain the interindividual dissimilarities in gut microbiota composition, with three main poles primarily characterized by operational taxonomic units (OTUs) classified as Prevotella (Moroccans, Turks, Ghanaians), Bacteroides (African Surinamese, South-Asian Surinamese), and Clostridiales (Dutch). The Dutch exhibited the greatest gut microbiota α-diversity and the South-Asian Surinamese the smallest, with corresponding enrichment or depletion in numerous OTUs. Ethnic differences in α-diversity and interindividual dissimilarities were independent of metabolic health and only partly explained by ethnic-related characteristics including sociodemographic, lifestyle, or diet factors. Hence, the ethnic origin of individuals may be an important factor to consider in microbiome research and its potential future applications in ethnic-diverse societies

    Metabolite profile of treatment-naive metabolic syndrome subjects in relation to cardiovascular disease risk

    No full text
    Metabolic syndrome (MetSyn) is an important risk factor for type 2 diabetes and cardiovascular diseases (CVD). This study aimed to find distinct plasma metabolite profiles between insulin-resistant and non-insulin resistant subjects with MetSyn and evaluate if MetSyn metabolite profiles are related to CVD risk and lipid fluxes. In a cross-sectional study, untargeted metabolomics of treatment-naive males with MetSyn (n = 132) were analyzed together with clinical parameters. In a subset of MetSyn participants, CVD risk was calculated using the Framingham score (n = 111), and lipolysis (n = 39) was measured by a two-step hyperinsulinemic euglycemic clamp using [1,1,2,3,3-2H5] glycerol to calculate lipolysis suppression rates. Peripheral insulin resistance was related to fatty acid metabolism and glycerolphosphorylcholine. Interestingly, although insulin resistance is considered to be a risk factor for CVD, we observed that there was little correspondence between metabolites associated with insulin resistance and metabolites associated with CVD risk. The latter mainly belonged to the androgenic steroid, fatty acid, phosphatidylethanolamine, and phophatidylcholine pathways. These data provide new insights into metabolic changes in mild MetSyn pathophysiology and MetSyn CVD risk related to lipid metabolism. Prospective studies may focus on the pathophysiological role of the here-identified biomarkers

    Metabolite profile of treatment-naive metabolic syndrome subjects in relation to cardiovascular disease risk

    No full text
    Metabolic syndrome (MetSyn) is an important risk factor for type 2 diabetes and cardiovascular diseases (CVD). This study aimed to find distinct plasma metabolite profiles between insulin-resistant and non-insulin resistant subjects with MetSyn and evaluate if MetSyn metabolite profiles are related to CVD risk and lipid fluxes. In a cross-sectional study, untargeted metabolomics of treatment-naive males with MetSyn (n = 132) were analyzed together with clinical parameters. In a subset of MetSyn participants, CVD risk was calculated using the Framingham score (n = 111), and lipolysis (n = 39) was measured by a two-step hyperinsulinemic euglycemic clamp using [1,1,2,3,3-2H5] glycerol to calculate lipolysis suppression rates. Peripheral insulin resistance was related to fatty acid metabolism and glycerolphosphorylcholine. Interestingly, although insulin resistance is considered to be a risk factor for CVD, we observed that there was little correspondence between metabolites associated with insulin resistance and metabolites associated with CVD risk. The latter mainly belonged to the androgenic steroid, fatty acid, phosphatidylethanolamine, and phophatidylcholine pathways. These data provide new insights into metabolic changes in mild MetSyn pathophysiology and MetSyn CVD risk related to lipid metabolism. Prospective studies may focus on the pathophysiological role of the here-identified biomarkers
    corecore