38 research outputs found

    Description of the unsteady flow pattern from peak efficiency to near surge in subsonic centrifugal compressor stage

    Get PDF
    This paper aims to describe the flow structure modifications when the operating point moves from peak efficiency to near stall condition in a moderate pressure ratio centrifugal compressor stage consisted of a splittered unshrouded impeller and a vaned diffuser. The investigations are based on three-dimensional U-RANS simulation results. The flow is described in the impeller and in the vaned diffuser through time-averaged flow quantities and unsteady fluctuations. Results show that at low mass flow rate, the effects of secondary flow in the impeller are more pronounced, inducing both, high time-averaged values and temporal fluctuations of the flow angle near the shroud at the diffuser inlet, leading to vane suction side boundary layer separation. Pressure waves due to impeller diffuser interaction spread through the vaned diffuser generating unsteadiness which intensifies at near surge condition

    Mining for adverse drug events with formal concept analysis

    Get PDF
    The pharmacovigilance databases consist of several case reports involving drugs and adverse events (AEs). Some methods are applied consistently to highlight all signals, i.e. all statistically significant associations between a drug and an AE. These methods are appropriate for verification of more complex relationships involving one or several drug(s) and AE(s) (e.g; syndromes or interactions) but do not address the identification of them. We propose a method for the extraction of these relationships based on Formal Concept Analysis (FCA) associated with disproportionality measures. This method identifies all sets of drugs and AEs which are potential signals, syndromes or interactions. Compared to a previous experience of disproportionality analysis without FCA, the addition of FCA was more efficient for identifying false positives related to concomitant drugs

    Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations

    Get PDF
    This study concerns a 2.5 pressure ratio centrifugal compressor stage consisting of a splittered unshrouded impeller and a vaned diffuser. The aim of this paper is to investigate the modifications of the flow structure when the operating point moves from peak efficiency to near stall. The investigations are based on the results of unsteady three-dimensional simulations, in a calculation domain comprising all the blade. A detailed analysis is given in the impeller inducer and in the vaned diffuser entry region through time-averaged and unsteady flow field. In the impeller inducer, this study demonstrates that the mass flow reduction from peak efficiency to near stall leads to intensification of the secondary flow effects. The low momentum fluid accumulated near the shroud interacts with the main flow through a shear layer zone. At near stall condition, the interface between the two flow structures becomes unstable leading to vortices development. In the diffuser entry region, by reducing the mass flow, the high incidence angle from the impeller exit induces a separation on the diffuser vane suction side. At near stall operating point, vorticity from the separation is shed into vortex cores which are periodically formed and convected downstream along the suction side

    Numerical Investigation of Kelvin–Helmholtz Instability in a Centrifugal Compressor Operating Near Stall

    Get PDF
    The present work details the occurrence of the Kelvin–Helmholtz instability in a centrifugal compressor operating near stall. The analysis is based on unsteady three-dimensional simulations performed on a calculation domain covering the full annulus for the impeller and the vaned diffuser. A detailed investigation of the flow structure is presented, together with its evolution consequent to the mass flow reduction. It is demonstrated that this reduction leads to an enlargement of the low-momentum flow region initially induced by the combination of the secondary and leakage flows. When the compressor operates near stall, the shear layer at the interface between the main flow and this low-momentum flow becomes unstable and induces a periodic vortex shedding. The frequency of such an unsteady phenomenon is not correlated with the blade-passing frequency. Its signature is thus easily isolated from the deterministic rotor/stator interaction. Its detection requires full-annulus simulations with an accurate resolution in time and space, which explains why it has never been previously observed in centrifugal compressor

    Improvement of the Parallel Compressor Model and Application to Inlet Flow Distortion

    Get PDF
    This paper introduces a semi-analytical approach which enables one to deal with distorted inflow in axial fans or compressors. It is inspired by the classical parallel compressor (PC) theory but relies on a local flow-loading coefficient formalism. It is applied to non-uniform flow conditions to study the aerodynamic behavior of a low-speed fan in response to upstream flow distortion. Experimental measurements and 3D RANS simulations are used to evaluate the prediction of fan performance obtained with the local PC method. The comparison proves that, despite its simplicity, the present approach enables to correctly capture first order phenomena, offering interesting perspectives for an early design phase if different fan geometries are to be tested and if the upstream distortion maps are available

    Performance prediction methodology and analysis of a variable pitch fan turbofan engine

    Get PDF
    The objective of this paper is development and application of a methodology for preliminary analysis of variable pitch fan (VPF), both as a separate component and as a module integrated into a short-medium range geared turbofan engine developed within European FP7 project ENOVAL. For this purpose, a high bypass ratio two spool geared turbofan engine model was constructed in software PROOSIS. A VPF performance modeling methodology was then developed using 3D steady RANS CFD produced fan maps as baseline; the CFD maps characterized five discrete fan pitch angle settings. In order to represent those maps in PROOSIS and add the pitch angle as a degree of freedom, they were transformed into the Map Fitting Tool (MFT) reference frame. Once the complete VPF turbofan model was in place, engine mission optimization experiments were carried out. The resulting performance is characterized by a good capability to control the fan surge margin, without degrading the engine fuel consumption. This paper represents a new contribution on the topic firstly by coupling a 0D engine performance code with a 3D RANS calculation, and then by introducing the concept of MFT maps with an additional degree of freedom as the interface between the two

    Influence of tip shroud cavities on low-pressure turbine main flowat design and off-design conditions

    Get PDF
    A lot of studies on turbomachinery main flow optimisation have been performed in order to reach actual efficiency level of modern gas turbines. To go further in the study of aerodynamic losses sources, a better understanding on technological effects is required. Tip shroud cavities in low pressure turbine is an example. Indeed, the by-pass flow causes additional pressure losses. In addition, interactions between main flow and cavity flows, as well as the re-entering flow, cause mixing losses and modifications of flow angle. This paper investigates the contribution of tip shroud cavities in a low pressure turbine stage on flow structures using (Unsteady) Reynolds Averaged Navier-Stokes simulations. The ability of a steady simulation to predict the overall performance and flow physics of this kind of flow is well documented in the literature but time-resolved simulations are needed to deepen the analysis. This is an objective of this paper. Following the presentation of the configuration under investigation, an analysis of flow structures is made in the upstream region of the rotor, close to the shroud. After that, simulations at off-design conditions are studied in order to evaluate this impact on the previous mechanisms

    Local and global analysis of a variable pitch fan turbofan engine

    Get PDF
    The objective of this paper is development and application of a methodology for preliminary analysis of variable pitch fan (VPF), both as a separate component and as a module integrated into a short-medium range geared turbofan engine developed within European FP7 project ENOVAL. For this purpose, a high bypass ratio two spool geared turbofan engine model was constructed in software PROOSIS. A VPF performance modelling methodology was then developed using 3D steady RANS CFD produced fan maps as baseline; the CFD maps characterised five discrete fan pitch angle settings. In order to represent those maps in PROOSIS and add the pitch angle as a degree of freedom, they were transformed into the Map Fitting Tool (MFT) reference frame. Once the complete VPF turbofan model was in place, engine mission optimisation experiments were carried out. The resulting performance is characterised by a good capability to control the fan surge margin, without degrading the engine fuel consumption

    Numerical Simulation of Stall Inception Mechanisms in a Centrifugal Compressor With Vaned Diffuser

    Get PDF
    The present paper numerically investigates the stall inception mechanisms in a centrifugal compressor stage composed of a splittered unshrouded impeller and a vaned diffuser. Unsteady numerical simulations have been conducted on a calculation domain compris- ing all the blade passages over 360 deg for the impeller and the diffuser. Three stable operating points are simulated along a speed line, and the full path to instability is inves- tigated. The paper focusses first on the effects of the mass flow reduction on the flow topology at the inlet of both components. Then, a detailed analysis of stall inception mechanisms is proposed. It is shown that at the inlet of both components, the mass flow reduction induces boundary layer separation on the blade suction side, which results in a vortex tube having its upper end at the casing and its lower end at the blade wall. Some similarities with flows in axial compressor operating at stall condition are outlined. The stall inception process starts with the growth of the amplitude of a modal wave rotating in the vaneless space. As the flow in the compressor is subsonic, the wave propagates upstream and interacts with the impeller flow structure. This interaction leads to the drop in the impeller pressure ratio

    Body Force Modeling of the Aerodynamics of a Low-Speed Fan under Distorted Inflow

    Get PDF
    New propulsive concepts, such as boundary layer ingestion, involve stronger interactions between the engine and its environment, and are thus more complex flows compared to classical architectures. Usual turbomachinery design tools are inadequate, and new numerical methodologies are needed to accurately predict the engine performance with affordable CPU resources. The present paper examines the relevance of a reduced-order modeling approach—the body force modeling (BFM) method—for a low-speed cooling fan with inflow distortion. The formulation itself accounts for the blade metal blockage and compressibility effects, and it relies on a semiempirical loss model, independent of computational fluid dynamics (CFD) calibration. The BFM results obtained in the present work are assessed against full-annulus unsteady Reynolds-averaged Navier-Stokes (URANS) results and experiments. The comparison shows that the BFM approach successfully quantifies the fan stage performance. Furthermore, the distortion transfer across the stage is examined and the flow patterns observed are found to be the same as in the URANS results and in the measurements. Hence, this methodology, coming at a low CPU cost, is well-adapted to the early design phase of an innovative propulsion system
    corecore