265 research outputs found
Does prenatal micronutrient supplementation improve children's mental development? A systematic review
<p>Abstract</p> <p>Background</p> <p>Although maternal nutrient status influences all aspects of fetal development including the brain, the impact of micronutrient supplementation on the baby's mental function is a topic of debate. This systematic review assesses the effect of single and multiple micronutrient supplementation during pregnancy on offspring mental development.</p> <p>Methods</p> <p>Eleven electronic literature databases were searched using key terms of various combinations and filter string terms. Reference lists of articles selected for review were scanned for citations fitting the same inclusion criteria. Each stage of the literature retrieval and review process was conducted independently by two reviewers. The CONSORT checklist was used to assess study quality.</p> <p>Results</p> <p>A total of 1316 articles were retrieved from the electronic database search, of which 18 met the inclusion criteria and were evaluated. The selected studies were randomized controlled trials published from 1983 to 2010, with high variance in sample size, intervention type, and outcome measures. The median CONSORT score was 15 (range 12 - 19). Due to inconsistent interventions and outcome measures among the studies, no conclusive evidence was found that enhancing the intrauterine environment through micronutrient supplementation was associated with child mental development in a number of dimensions. There was some evidence to support n-3 fatty acids or multi-micronutrients having some positive effect on mental development, but the evidence for single nutrients was much weaker.</p> <p>Conclusions</p> <p>The study of children's mental outcomes as a function of prenatal supplementation is still relatively new, but the results of this systematic review suggest that further work with multiple micronutrients and/or n-3 fatty acids should be conducted.</p
Personal model-assisted identification of NAD(+) and glutathione metabolism as intervention target in NAFLD
To elucidate the molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome-scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD(+) and glutathione (GSH) in subjects with high HS. Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD(+) repletion on the development of NAFLD, we added precursors for GSH and NAD(+) biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof-of-concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.Peer reviewe
Dietary Fat Intake and the Risk of Depression: The SUN Project
Emerging evidence relates some nutritional factors to depression risk. However, there is a scarcity of longitudinal assessments on this relationship
Effectiveness of hygienic-dietary recommendations as enhancers of antidepressant treatment in patients with Depression: Study protocol of a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>In recent years some studies have been published supporting the efficacy of light exposure, physical activity, sleep control and a Mediterranean diet pattern on the improvement or prevention of Depression. However, to our knowledge, there have been no studies using all these measures together as an adjuvant antidepressant strategy.</p> <p>Methods</p> <p>Multicenter, randomized, controlled, two arm-parallel, clinical trial. Eighty depressed patients undergoing standard antidepressant treatment will be advised to follow four additional hygienic-dietary recommendations about exercise, diet, sunlight exposure and sleep. Outcome measures will be assessed before and after the 6 month intervention period.</p> <p>Discussion</p> <p>We expect the patients in the active recommendations group to experience a greater improvement in their depressive symptoms. If so, this would be a great support for doctors who might systematically recommend these simple and costless measures, especially in primary care.</p> <p>Trial Registration</p> <p>ISRCTN59506583</p
The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates
<p/> <p>Background</p> <p>Stearoyl-CoA desaturases (SCDs) are key enzymes involved in <it>de novo </it>monounsaturated fatty acid synthesis. They catalyze the desaturation of saturated fatty acyl-CoA substrates at the delta-9 position, generating essential components of phospholipids, triglycerides, cholesterol esters and wax esters. Despite being crucial for interpreting SCDs roles across species, the evolutionary history of the SCD gene family in vertebrates has yet to be elucidated, in particular their isoform diversity, origin and function. This work aims to contribute to this fundamental effort.</p> <p>Results</p> <p>We show here, through comparative genomics and phylogenetics that the SCD gene family underwent an unexpectedly complex history of duplication and loss events. Paralogy analysis hints that SCD1 and SCD5 genes emerged as part of the whole genome duplications (2R) that occurred at the stem of the vertebrate lineage. The SCD1 gene family expanded in rodents with the parallel loss of SCD5 in the Muridae family. The SCD1 gene expansion is also observed in the Lagomorpha although without the SCD5 loss. In the amphibian <it>Xenopus tropicalis </it>we find a single SCD1 gene but not SCD5, though this could be due to genome incompleteness. In the analysed teleost species no SCD5 is found, while the surrounding SCD5-less locus is conserved in comparison to tetrapods. In addition, the teleost SCD1 gene repertoire expanded to two copies as a result of the teleost specific genome duplication (3R). Finally, we describe clear orthologues of SCD1 and SCD5 in the chondrichthian, <it>Scyliorhinus canicula</it>, a representative of the oldest extant jawed vertebrate clade. Expression analysis in <it>S. canicula </it>shows that whilst SCD1 is ubiquitous, SCD5 is mainly expressed in the brain, a pattern which might indicate an evolutionary conserved function.</p> <p>Conclusion</p> <p>We conclude that the SCD1 and SCD5 genes emerged as part of the 2R genome duplications. We propose that the evolutionary conserved gene expression between distinct lineages underpins the importance of SCD activity in the brain (and probably the pancreas), in a yet to be defined role. We argue that an expression independent of an external stimulus, such as diet induced activity, emerged as a novel function in vertebrate ancestry allocated to the SCD5 isoform in various tissues (e.g. brain and pancreas), and it was selectively maintained throughout vertebrate evolution.</p
Healthy dietary indices and risk of depressive outcomes : a systematic review and meta-analysis of observational studies
With depression being the psychiatric disorder incurring the largest societal costs in developed countries, there is a need to gather evidence on the role of nutrition in depression, to help develop recommendations and guide future psychiatric health care. The aim of this systematic review was to synthesize the link between diet quality, measured using a range of predefined indices, and depressive outcomes. Medline, Embase and PsychInfo were searched up to 31st May 2018 for studies that examined adherence to a healthy diet in relation to depressive symptoms or clinical depression. Where possible, estimates were pooled using random effect meta-analysis with stratification by observational study design and dietary score. A total of 20 longitudinal and 21 cross-sectional studies were included. These studies utilized an array of dietary measures, including: different measures of adherence to the Mediterranean diet, the Healthy Eating Index (HEI) and Alternative HEI (AHEI), the Dietary Approaches to Stop Hypertension, and the Dietary Inflammatory Index. The most compelling evidence was found for the Mediterranean diet and incident depression, with a combined relative risk estimate of highest vs. lowest adherence category from four longitudinal studies of 0.67 (95% CI 0.55-0.82). A lower Dietary Inflammatory Index was also associated with lower depression incidence in four longitudinal studies (relative risk 0.76; 95% CI: 0.63-0.92). There were fewer longitudinal studies using other indices, but they and cross-sectional evidence also suggest an inverse association between healthy diet and depression (e.g., relative risk 0.65; 95% CI 0.50-0.84 for HEI/AHEI). To conclude, adhering to a healthy diet, in particular a traditional Mediterranean diet, or avoiding a pro-inflammatory diet appears to confer some protection against depression in observational studies. This provides a reasonable evidence base to assess the role of dietary interventions to prevent depression.Peer reviewe
Conjugation to the Cell-Penetrating Peptide TAT Potentiates the Photodynamic Effect of Carboxytetramethylrhodamine
Cell-penetrating peptides (CPPs) can transport macromolecular cargos into live cells. However, the cellular delivery efficiency of these reagents is often suboptimal because CPP-cargo conjugates typically remain trapped inside endosomes. Interestingly, irradiation of fluorescently labeled CPPs with light increases the release of the peptide and its cargos into the cytosol. However, the mechanism of this phenomenon is not clear. Here we investigate the molecular basis of the photo-induced endosomolytic activity of the prototypical CPPs TAT labeled to the fluorophore 5(6)-carboxytetramethylrhodamine (TMR).We report that TMR-TAT acts as a photosensitizer that can destroy membranes. TMR-TAT escapes from endosomes after exposure to moderate light doses. However, this is also accompanied by loss of plasma membrane integrity, membrane blebbing, and cell-death. In addition, the peptide causes the destruction of cells when applied extracellularly and also triggers the photohemolysis of red blood cells. These photolytic and photocytotoxic effects were inhibited by hydrophobic singlet oxygen quenchers but not by hydrophilic quenchers.Together, these results suggest that TAT can convert an innocuous fluorophore such as TMR into a potent photolytic agent. This effect involves the targeting of the fluorophore to cellular membranes and the production of singlet oxygen within the hydrophobic environment of the membranes. Our findings may be relevant for the design of reagents with photo-induced endosomolytic activity. The photocytotoxicity exhibited by TMR-TAT also suggests that CPP-chromophore conjugates could aid the development of novel Photodynamic Therapy agents
- …