133 research outputs found

    Gracefully Degrading Gathering in Dynamic Rings

    Get PDF
    Gracefully degrading algorithms [Biely \etal, TCS 2018] are designed to circumvent impossibility results in dynamic systems by adapting themselves to the dynamics. Indeed, such an algorithm solves a given problem under some dynamics and, moreover, guarantees that a weaker (but related) problem is solved under a higher dynamics under which the original problem is impossible to solve. The underlying intuition is to solve the problem whenever possible but to provide some kind of quality of service if the dynamics become (unpredictably) higher.In this paper, we apply for the first time this approach to robot networks. We focus on the fundamental problem of gathering a squad of autonomous robots on an unknown location of a dynamic ring. In this goal, we introduce a set of weaker variants of this problem. Motivated by a set of impossibility results related to the dynamics of the ring, we propose a gracefully degrading gathering algorithm

    Asynchronous approach in the plane: A deterministic polynomial algorithm

    Full text link
    In this paper we study the task of approach of two mobile agents having the same limited range of vision and moving asynchronously in the plane. This task consists in getting them in finite time within each other's range of vision. The agents execute the same deterministic algorithm and are assumed to have a compass showing the cardinal directions as well as a unit measure. On the other hand, they do not share any global coordinates system (like GPS), cannot communicate and have distinct labels. Each agent knows its label but does not know the label of the other agent or the initial position of the other agent relative to its own. The route of an agent is a sequence of segments that are subsequently traversed in order to achieve approach. For each agent, the computation of its route depends only on its algorithm and its label. An adversary chooses the initial positions of both agents in the plane and controls the way each of them moves along every segment of the routes, in particular by arbitrarily varying the speeds of the agents. A deterministic approach algorithm is a deterministic algorithm that always allows two agents with any distinct labels to solve the task of approach regardless of the choices and the behavior of the adversary. The cost of a complete execution of an approach algorithm is the length of both parts of route travelled by the agents until approach is completed. Let Δ\Delta and ll be the initial distance separating the agents and the length of the shortest label, respectively. Assuming that Δ\Delta and ll are unknown to both agents, does there exist a deterministic approach algorithm always working at a cost that is polynomial in Δ\Delta and ll? In this paper, we provide a positive answer to the above question by designing such an algorithm

    Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm

    Get PDF
    In this paper we study the task of approach of two mobile agents having the same limited range of vision and moving asynchronously in the plane. This task consists in getting them in finite time within each other\u27s range of vision. The agents execute the same deterministic algorithm and are assumed to have a compass showing the cardinal directions as well as a unit measure. On the other hand, they do not share any global coordinates system (like GPS), cannot communicate and have distinct labels. Each agent knows its label but does not know the label of the other agent or the initial position of the other agent relative to its own. The route of an agent is a sequence of segments that are subsequently traversed in order to achieve approach. For each agent, the computation of its route depends only on its algorithm and its label. An adversary chooses the initial positions of both agents in the plane and controls the way each of them moves along every segment of the routes, in particular by arbitrarily varying the speeds of the agents. Roughly speaking, the goal of the adversary is to prevent the agents from solving the task, or at least to ensure that the agents have covered as much distance as possible before seeing each other. A deterministic approach algorithm is a deterministic algorithm that always allows two agents with any distinct labels to solve the task of approach regardless of the choices and the behavior of the adversary. The cost of a complete execution of an approach algorithm is the length of both parts of route travelled by the agents until approach is completed. Let Delta and l be the initial distance separating the agents and the length of (the binary representation of) the shortest label, respectively. Assuming that Delta and l are unknown to both agents, does there exist a deterministic approach algorithm whose cost is polynomial in Delta and l? Actually the problem of approach in the plane reduces to the network problem of rendezvous in an infinite oriented grid, which consists in ensuring that both agents end up meeting at the same time at a node or on an edge of the grid. By designing such a rendezvous algorithm with appropriate properties, as we do in this paper, we provide a positive answer to the above question. Our result turns out to be an important step forward from a computational point of view, as the other algorithms allowing to solve the same problem either have an exponential cost in the initial separating distance and in the labels of the agents, or require each agent to know its starting position in a global system of coordinates, or only work under a much less powerful adversary

    Gracefully Degrading Gathering in Dynamic Rings

    Get PDF
    Gracefully degrading algorithms [Biely \etal, TCS 2018] are designed to circumvent impossibility results in dynamic systems by adapting themselves to the dynamics. Indeed, such an algorithm solves a given problem under some dynamics and, moreover, guarantees that a weaker (but related) problem is solved under a higher dynamics under which the original problem is impossible to solve. The underlying intuition is to solve the problem whenever possible but to provide some kind of quality of service if the dynamics become (unpredictably) higher.In this paper, we apply for the first time this approach to robot networks. We focus on the fundamental problem of gathering a squad of autonomous robots on an unknown location of a dynamic ring. In this goal, we introduce a set of weaker variants of this problem. Motivated by a set of impossibility results related to the dynamics of the ring, we propose a gracefully degrading gathering algorithm

    Molecular studies on the control of the expression of the NPY-Y1 receptor gene

    Get PDF
    The cDNA that encodes for the rat NPY-Y1 receptor has been reported (Eva at al., 1990) and predicts a classical G-protein coupled receptor. This receptor has been linked to important physiological process in the nervous system (Grundemar and Hakanson, 1994). In this thesis the gene that encodes for the promoter of the rat NPY-Y1 receptor was obtained by PCR subcloning. (i) This region contains several consensus sequences for transcription factors: a "TATA-like" box, a "CAAT-like" box, an Sp1 site, an AP1 site, two CRE elements, a non-palindromic ERE and four non-palindromic GRE. (ii) This region has been attached to the reporter function, luciferase, so that the expression of this enzyme has been placed under the control of the promoter region of the NPY-Y1 receptor (pY1-LUC). (iii) The pY1-LUC has been transiently transfected into PC12 cells, a rat phaeochromocytoma cell line (Greene and Tischler, 1976), GTl-7 cells, a mouse hypothalamic cell line (Mellon et al., 1990) and RINm5f cells, a rat beta-pancreatic cell line (Poliak et al., 1993) which express constitutive levels of the NPY-Y1 receptor. It is thus possible to measure the basal transcriptional activity of this gene and study the factors which affect its transcriptional levels in these cells. (iv) Differentiation of the cells into an adrenal chromaffin-like phenotype with dexamethasone and in a neuronal-like phenotype with NGF or PACAP increased the transcriptional activity of the NPY-Y1 gene in PC 12 cells. Moreover, activation of PKA with DBC or forskolin, and activation of PKC with DH1 or PMA also increased the expression of this gene in PC12 cells. (v) The transcriptional response to NGF was dependent on trk A receptor and PKC activation but independent of ras-MAPK activation. Moreover, the effect of PACAP-38 was dependent in both PKA and PKC activation, but is also independent in ras-MAPK activation. Thus, the transcription of the NPY-Y1 receptor its under tight regulation by the glucocorticoid receptor, PKA and PKC signalling in a sympatho-adrenal model system, PC 12 cells

    Computability of Perpetual Exploration in Highly Dynamic Rings

    Get PDF
    We consider systems made of autonomous mobile robots evolving in highly dynamic discrete environment i.e., graphs where edges may appear and disappear unpredictably without any recurrence, stability, nor periodicity assumption. Robots are uniform (they execute the same algorithm), they are anonymous (they are devoid of any observable ID), they have no means allowing them to communicate together, they share no common sense of direction, and they have no global knowledge related to the size of the environment. However, each of them is endowed with persistent memory and is able to detect whether it stands alone at its current location. A highly dynamic environment is modeled by a graph such that its topology keeps continuously changing over time. In this paper, we consider only dynamic graphs in which nodes are anonymous, each of them is infinitely often reachable from any other one, and such that its underlying graph (i.e., the static graph made of the same set of nodes and that includes all edges that are present at least once over time) forms a ring of arbitrary size. In this context, we consider the fundamental problem of perpetual exploration: each node is required to be infinitely often visited by a robot. This paper analyzes the computability of this problem in (fully) synchronous settings, i.e., we study the deterministic solvability of the problem with respect to the number of robots. We provide three algorithms and two impossibility results that characterize, for any ring size, the necessary and sufficient number of robots to perform perpetual exploration of highly dynamic rings

    Gracefully Degrading Gathering in Dynamic Rings

    Get PDF
    Gracefully degrading algorithms [Biely \etal, TCS 2018] are designed to circumvent impossibility results in dynamic systems by adapting themselves to the dynamics. Indeed, such an algorithm solves a given problem under some dynamics and, moreover, guarantees that a weaker (but related) problem is solved under a higher dynamics under which the original problem is impossible to solve. The underlying intuition is to solve the problem whenever possible but to provide some kind of quality of service if the dynamics become (unpredictably) higher.In this paper, we apply for the first time this approach to robot networks. We focus on the fundamental problem of gathering a squad of autonomous robots on an unknown location of a dynamic ring. In this goal, we introduce a set of weaker variants of this problem. Motivated by a set of impossibility results related to the dynamics of the ring, we propose a gracefully degrading gathering algorithm

    Quel est le nombre optimal de robots pour explorer un anneau hautement dynamique ?

    Get PDF
    International audienceDans cet article, nous nous intéressons à la coordination algorithmique d'une cohorte de robots mobiles. Ces robots sont autonomes, uniformes, anonymes, capables de percevoir leur environnement, mais pas de communiquer. Ils évoluent de manière synchrone dans un environnement fini et discret représenté par un graphe. Nous supposons que cet environnement est un anneau hautement dynamique, c'est-à-dire un anneau dont les arêtes peuvent apparaître et disparaître de manière imprévisible sans aucune hypothèse de récurrence, de stabilité ou de périodicité à travers le temps mais avec une hypothèse de connexité temporelle minimale à la résolution du problème. Nous nous intéressons en particulier au problème de l'exploration perpétuelle de ce type de graphe, problème dans lequel chaque nœud de l'anneau doit être infiniment souvent visité par un robot. Notre contribution est la caractérisation exhaustive du nombre de robots nécessaires et suffisants pour résoudre ce problème en fonction de la taille de l'anneau

    Computability of Perpetual Exploration in Highly Dynamic Rings

    Get PDF
    International audienceWe consider systems made of autonomous mobile robots evolving in highly dynamic discrete environment, i.e., graphs where edges may appear and disappear unpredictably without any recurrence, stability, nor periodicity assumption. Robots are uniform (they execute the same algorithm), they are anonymous (they are devoid of any observable ID), they have no means allowing them to communicate together, they share no common sense of direction, and they have no global knowledge related to the size of the environment. However, each of them is endowed with persistent memory and is able to detect whether it stands alone at its current location. A highly dynamic environment is modeled by a graph such that its topology keeps continuously changing over time. In this paper, we consider only dynamic graphs in which nodes are anonymous, each of them is infinitely often reachable from any other one, and such that its underlying graph (i.e., the static graph made of the same set of nodes and that includes all edges that are present at least once over time) forms a ring of arbitrary size. In this context, we consider the fundamental problem of perpetual exploration: each node is required to be infinitely often visited by a robot.This paper analyses the computability of this problem in (fully) synchronous settings, i.e., we study the deterministic solvability of the problem with respect to the number of robots. We provide three algorithms and two impossibility results that characterize, for any ring size, the necessary and sufficient number of robots to perform perpetual exploration of highly dynamic rings
    corecore