
Asynchronous Approach in the Plane:
A Deterministic Polynomial Algorithm∗

Sébastien Bouchard1, Marjorie Bournat2, Yoann Dieudonné†3,
Swan Dubois4, and Franck Petit5

1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6 UMR 7606,
Paris, France
sebastien.bouchard@lip6.fr

2 Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6 UMR 7606,
Paris, France
marjorie.bournat@lip6.fr

3 Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France
yoann.dieudonne@u-picardie.fr

4 Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6 UMR 7606,
Paris, France
swan.dubois@lip6.fr

5 Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6 UMR 7606,
Paris, France
franck.petit@lip6.fr

Abstract
In this paper we study the task of approach of two mobile agents having the same limited range of
vision and moving asynchronously in the plane. This task consists in getting them in finite time
within each other’s range of vision. The agents execute the same deterministic algorithm and are
assumed to have a compass showing the cardinal directions as well as a unit measure. On the
other hand, they do not share any global coordinates system (like GPS), cannot communicate
and have distinct labels. Each agent knows its label but does not know the label of the other
agent or the initial position of the other agent relative to its own. The route of an agent is a
sequence of segments that are subsequently traversed in order to achieve approach. For each
agent, the computation of its route depends only on its algorithm and its label. An adversary
chooses the initial positions of both agents in the plane and controls the way each of them moves
along every segment of the routes, in particular by arbitrarily varying the speeds of the agents.
Roughly speaking, the goal of the adversary is to prevent the agents from solving the task, or
at least to ensure that the agents have covered as much distance as possible before seeing each
other. A deterministic approach algorithm is a deterministic algorithm that always allows two
agents with any distinct labels to solve the task of approach regardless of the choices and the
behavior of the adversary. The cost of a complete execution of an approach algorithm is the
length of both parts of route travelled by the agents until approach is completed.

Let ∆ and l be the initial distance separating the agents and the length of (the binary
representation of) the shortest label, respectively. Assuming that ∆ and l are unknown to both
agents, does there exist a deterministic approach algorithm whose cost is polynomial in ∆ and l?

Actually the problem of approach in the plane reduces to the network problem of rendezvous
in an infinite oriented grid, which consists in ensuring that both agents end up meeting at the
same time at a node or on an edge of the grid. By designing such a rendezvous algorithm with
appropriate properties, as we do in this paper, we provide a positive answer to the above question.

∗ This work was performed within Project ESTATE (Ref. ANR-16-CE25-0009-03), supported by French
state funds managed by the ANR (Agence Nationale de la Recherche).

† Partially supported by the European Regional Development Fund (ERDF) and the Picardy region
under Project TOREDY.

© Sébastien Bouchard, Marjorie Bournat, Yoann Dieudonné, Swan Dubois, and Franck Petit;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


8:2 Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm

Our result turns out to be an important step forward from a computational point of view,
as the other algorithms allowing to solve the same problem either have an exponential cost in
the initial separating distance and in the labels of the agents, or require each agent to know
its starting position in a global system of coordinates, or only work under a much less powerful
adversary.

1998 ACM Subject Classification G.2.2 Graph Theory, C.2.4 Distributed Systems

Keywords and phrases mobile agents, asynchronous rendezvous, plane, infinite grid, determin-
istic algorithm, polynomial cost

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.8

1 Introduction

1.1 Model and Problem
The distributed system considered in this paper consists of two mobile agents that are initially
placed by an adversary at arbitrary but distinct positions in the plane. Both agents have a
limited sensory radius (in the sequel also referred to as radius of vision), the value of which
is denoted by ε, allowing them to sense (or, to see) all their surroundings at distance at most
ε from their respective current locations. We assume that the agents know the value of ε.
As stated in [11], when ε = 0, if agents start from arbitrary positions of the plane and can
freely move on it, making them occupy the same location at the same time is impossible in a
deterministic way. So, we assume that ε > 0 and we consider the task of approach which
consists in bringing them at distance at most ε so that they can see each other. In other
words, the agents completed their approach once they mutually sense each other and they
can even get closer. Without loss of generality, we assume in the rest of this paper that ε = 1.

The initial positions of the agents, arbitrarily chosen by the adversary, are separated by
a distance ∆ that is initially unknown to both agents and that is greater than ε = 1. In
addition to the initial positions, the adversary also assigns a different non-negative integer
(called label) to each agent. The label of an agent is the only input of the deterministic
algorithm executed by the agent. While the labels are distinct, the algorithm is the same for
both agents. Each agent is equipped with a compass showing the cardinal directions and
with a unit of length. The cardinal directions and the unit of length are the same for both
agents.

To describe how and where each agent moves, we need to introduce two important notions
that are borrowed from [11]: The route and the walk of an agent. The route of an agent
is a sequence (S1, S2, S3 . . .) of segments Si = [ai, ai+1] traversed in stages as follows. The
route starts from a1, the initial position of the agent. For every i ≥ 1, starting from the
position ai, the agent initiates Stage i by choosing a direction α (using its compass) as well
as a distance x. Stage i ends as soon as the agent either sees the other agent or reaches
ai+1 corresponding to the point at distance x from ai in direction α. Stages are repeated
indefinitely (until the approach is completed).

Since both agents never know their positions in a global coordinate system, the directions
they choose at each stage can only depend on their (deterministic) algorithm and their labels.
So, the route (the actual sequence of segments) followed by an agent depends on its algorithm
and its label, but also on its initial position. By contrast, the walk of each agent along every
segment of its route is controlled by the adversary. More precisely, within each stage Si and

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.8


S. Bouchard, M. Bournat, Y. Dieudonné, S. Dubois, and F. Petit 8:3

while the approach is not achieved, the adversary can arbitrarily vary the speed of the agent,
stop it and even move it back and forth as long as the walk of the agent is continuous, does
not leave Si, and ends at ai+1. Roughly speaking, the goal of the adversary is to prevent
the agents from solving the task, or at least to ensure that the agents have covered as much
distance as possible before seeing each other. We assume that at any time an agent can
remember the route it has followed since the beginning.

A deterministic approach algorithm is a deterministic algorithm that always allows two
agents to solve the task of approach regardless of the choices and the behavior of the adversary.
The cost of an accomplished approach is the length of both parts of route travelled by the
agents until they see each other. An approach algorithm is said to be polynomial in ∆ and
in the length of the binary representation of the shortest label between both agents if it
always permits to solve the problem of approach at a cost that is polynomial in the two
aforementioned parameters, no matter what the adversary does.

It is worth mentioning that the use of distinct labels is not fortuitous. In the absence of a
way of distinguishing the agents, the task of approach would have no deterministic solution.
This is especially the case if the adversary handles the agents in a perfect synchronous
manner. Indeed, if the agents act synchronously and have the same label, they will always
follow the same deterministic rules leading to a situation in which the agents will always be
exactly at distance ∆ from each other.

1.2 Our Results

In this paper, we prove that the task of approach can be solved deterministically in the above
asynchronous model, at a cost that is polynomial in the unknown initial distance separating
the agents and in the length of the binary representation of the shortest label. To obtain this
result, we go through the design of a deterministic algorithm for a very close problem, that
of rendezvous in an infinite oriented grid which consists in ensuring that both agents end up
meeting either at a node or on an edge of the grid. The tasks of approach and rendezvous
are very close as the former can be reduced to the latter.

It should be noticed that our result turns out to be an important advance, from a
computational point of view, in resolving the task of approach. Indeed, the other existing
algorithms allowing to solve the same problem either have an exponential cost in the initial
separating distance and in the labels of the agents [11], or require each agent to know its
starting position in a global system of coordinates [9], or only work under a much less
powerful adversary [17] which initially assigns a possibly different speed to each agent but
cannot vary it afterwards.

1.3 Related Work

The task of approach is closely linked to the task of rendezvous. Historically, the first mention
of the rendezvous problem appeared in [32]. From this publication until now, the problem
has been extensively studied so that there is henceforth a huge literature about this subject.
This is mainly due to the fact that there is a lot of alternatives for the combinations we can
make when addressing the problem, e.g., playing on the environment in which the agents are
supposed to evolve, the way of applying the sequences of instructions (i.e., deterministic or
randomized) or the ability to leave some traces in the visited locations, etc. Naturally, in
this paper we focus on work that are related to deterministic rendezvous. This is why we
will mostly dwell on this scenario in the rest of this subsection.

DISC 2017



8:4 Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm

However, for the curious reader wishing to consider the matter in greater depth, re-
garding randomized rendezvous, a good starting point is to go through [2, 27]. Concerning
deterministic rendezvous, the literature is divided according to the way of modeling the
environnement: Agents can either move in a graph representing a network, or in the plane.

For the problem of rendezvous in networks, a lot of papers considered synchronous
settings, i.e., a context where the agents move in the graph in synchronous rounds. This
is particularly the case of [16] in which the authors presented a deterministic protocol for
solving the rendezvous problem, which guarantees a meeting of the two involved agents
after a number of rounds that is polynomial in the size n of the graph, the length l of the
shortest of the two labels and the time interval τ between their wake-up times. As an open
problem, the authors asked whether it was possible to obtain a polynomial solution to this
problem which would be independent of τ . A positive answer to this question was given,
independently of each other, in [26] and [34]. While these algorithms ensure rendezvous in
polynomial time (i.e., a polynomial number of rounds), they also ensure it at polynomial
cost because the cost of a rendezvous protocol in a graph is the number of edges traversed
by the agents until they meet – each agent can make at most one edge traversal per round.
Note that despite the fact a polynomial time implies a polynomial cost in this context, the
reciprocal is not always true as the agents can have very long waiting periods, sometimes
interrupted by a movement. Thus these parameters of cost and time are not always linked to
each other. This was highlighted in [30] where the authors studied the tradeoffs between
cost and time for the deterministic rendezvous problem. More recently, some efforts have
been dedicated to analyse the impact on time complexity of rendezvous when in every round
the agents are brought with some pieces of information by making a query to some device
or some oracle [13, 29]. Along with the work aiming at optimizing the parameters of time
and/or cost of rendezvous, some other work have examined the amount of required memory
to solve the problem, e.g., [23, 24] for tree networks and in [10] for general networks. In [5],
the problem is approached in a fault-prone framework, in which the adversary can delay an
agent for a finite number of rounds, each time it wants to traverse an edge of the network.

Rendezvous is the term that is usually used when the task of meeting is restricted to
a team of exactly two agents. When considering a team of two agents or more, the term
of gathering is commonly used. Still in the context of synchronous networks, we can cite
some work about gathering two or more agents. In [18], the task of gathering is studied
for anonymous agents while in [4, 14, 19] the same task is studied in presence of byzantine
agents that are, roughly speaking, malicious agents with an arbitrary behavior.

Some studies have been also dedicated to the scenario in which the agents move asyn-
chronously in a network [11, 20, 28], i.e., assuming that the agent speed may vary, controlled
by the adversary. In [28], the authors investigated the cost of rendezvous for both infinite
and finite graphs. In the former case, the graph is reduced to the (infinite) line and bounds
are given depending on whether the agents know the initial distance between them or not. In
the latter case (finite graphs), similar bounds are given for ring shaped networks. They also
proposed a rendezvous algorithm for an arbitrary graph provided the agents initially know
an upper bound on the size of the graph. This assumption was subsequently removed in
[11]. However, in both [28] and [11], the cost of rendezvous was exponential in the size of the
graph. The first rendezvous algorithm working for arbitrary finite connected graphs at cost
polynomial in the size of the graph and in the length of the shortest label was presented in
[20]. (It should be stressed that the algorithm from [20] cannot be used to obtain the solution
described in the present paper: this point is fully explained in the end of this subsection).
In all the aforementioned studies, the agents can remember all the actions they have made



S. Bouchard, M. Bournat, Y. Dieudonné, S. Dubois, and F. Petit 8:5

since the beginning. A different asynchronous scenario for networks was studied in [12]. In
this paper, the authors assumed that agents are oblivious, but they can observe the whole
graph and make navigation decisions based on these observations.

Concerning rendezvous or gathering in the plane, we also found the same dichotomy of
synchronicity vs. asynchronicity. The synchronous case was introduced in [33] and studied
from a fault-tolerance point of view in [1, 15, 21]. In [25], rendezvous in the plane is studied
for oblivious agents equipped with unreliable compasses under synchronous and asynchronous
models. Asynchronous gathering of many agents in the plane has been studied in various
settings in [6, 7, 8, 22, 31]. However, the common feature of all these papers related to
rendezvous or gathering in the plane – which is not present in our model – is that the agents
can observe all the positions of the other agents or at least the global graph of visibility is
always connected (i.e., the team cannot be split into two groups so that no agent of the first
group can detect at least one agent of the second group).

Finally, the closest works to ours allowing to solve the problem of approach under an
asynchronous framework are [9, 3, 11, 17]. In [9, 11, 17], the task of approach is solved by
reducing it to the task of rendezvous in an infinite oriented grid. In [3], the authors present a
solution to solve the task of approach in a multidimensional space by reducing it to the task
of rendezvous in an infinite multidimensional grid. Let us give some more details concerning
these four works to highlight the contrasts with our present contribution. The result from
[11] leads to a solution to the problem of approach in the plane but has the disadvantage
of having an exponential cost. The result from [9] and [3] also implies a solution to the
problem of approach in the plane at cost polynomial in the initial distance of the agents.
However, in both these works, the authors use the powerful assumption that each agent
knows its starting position in a global system of coordinates (while in our paper, the agents
are completely ignorant of where they are). Lastly, the result from [17] provides a solution at
cost polynomial in the initial distance between agents and in the length of the shortest label.
However, the authors of this study also used a powerful assumption: The adversary initially
assigns a possibly different and arbitrary speed to each agent but cannot vary it afterwards.
Hence, each agent moves at constant speed and uses clock to achieve approach. By contrast,
in our paper, we assume basic asynchronous settings, i.e., the adversary arbitrarily and
permanently controls the speed of each agent.

To close this subsection, it is worth mentioning that it is unlikely that the algorithm from
[20] that we referred to above, which is especially designed for asynchronous rendez-vous
in arbitrary finite graphs, could be used to obtain our present result. First, in [20] the
algorithm has not a cost polynomial in the initial distance separating the agents and in the
length of the smaller label. Actually, ensuring rendezvous at this cost is even impossible in
arbitrary graph, as witnessed by the case of the clique with two agents labeled 0 and 1: the
adversary can hold one agent at a node and make the other agent traverse Θ(n) edges before
rendezvous, in spite of the initial distance 1. Moreover, the validity of the algorithm given in
[20] closely relies on the fact that both agents must evolve in the same finite graph, which is
clearly not the case in our present scenario. In particular even when considering the task
of rendezvous in an infinite oriented grid, the natural attempt consisting in making each
agent apply the algorithm from [20] within bounded grids of increasing size and centered
in its initial position, does not permit to claim that rendezvous ends up occurring. Indeed,
the bounded grid considered by an agent is never exactly the same than the bounded grid
considered by the other one (although they may partly overlap), and thus the agents never
evolve in the same finite graph which is a necessary condition to ensure the validity of the
solution of [20] and by extension of this natural attempt.

DISC 2017



8:6 Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm

1.4 Roadmap

The next section (Section 2) is dedicated to the computational model and basic definitions.
We sketch our solution in Section 3, more formally described in Sections 4. Finally, we make
some concluding remarks in Section 5. Due to the lack of space, details on the algorithm,
the proofs of correction and cost analysis are omitted but will appear in the journal version
of the paper.

2 Preliminaries

We know from [11, 17] that the problem of approach in the plane can be reduced to that of
rendezvous in an infinite grid specified in the next paragraph.

Consider an infinite square grid in which every node u is adjacent to 4 nodes located
North, East, South, and West from node u. We call such a grid a basic grid. Two agents with
distinct labels (corresponding to non-negative integers) starting from arbitrary and distinct
nodes of a basic grid G have to meet either at some node or inside some edge of G. As for
the problem of approach (in the plane), each agent is equipped with a compass showing the
cardinal directions. The agents can see each other and communicate only when they share
the same location in G. In other words, in the basic grid G we assume that the sensory
radius (or, radius of vision) of the agents is equal to zero. In such settings, the only initial
input that is given to a rendezvous algorithm is the label of the executing agent. When
occupying a node u, an agent decides (according to its algorithm) to move to an adjacent
node v via one of the four cardinal directions: the movement of the agent along the edge
{u, v} is controlled by the adversary in the same way as in a section of a route (refer to
Subsection 1.1 ), i.e., the adversary can arbitrarily vary the speed of the agent, stop it and
even move it back and forth as long as the walk of the agent is continuous, does not leave
the edge, and ends at v.

The cost of a rendezvous algorithm in a basic grid is the total number of edge traversals
by both agents until their meeting.

From the reduction described in [17], we have the following theorem.

I Theorem 1. If there exists a deterministic algorithm solving the problem of rendezvous
between any two agents in a basic grid at cost polynomial in D and in the length of the
binary representation of the shortest of their labels where D is the distance (in the Manhattan
metric) between the two starting nodes occupied by the agents, then there exists a deterministic
algorithm solving the problem of approach in the plane between any two agents at cost
polynomial in ∆ and in the length of the binary representation of the shortest of their labels
where ∆ is the initial Euclidean distance separating the agents.

Hence in the rest of the paper we will consider rendezvous in a basic grid, instead of the
task of approach. We use N (resp. E, S, W ) to denote the cardinal direction North (resp.
East, South, West) and an instruction like “Perform NS” means that the agent traverses
one edge to the North and then traverses one edge to the South (by the way, coming back
to its initial position). We denote by D the initial (Manhattan) distance separating two
agents in a basic grid. A route followed by an agent in a basic grid corresponds to a path in
the grid (i.e., a sequence of edges e1, e2, e3, e4, . . .) that are consecutively traversed by the
agent until rendezvous is done. For any integer k, we define the reverse path to the path
e1, . . . , ek as the path ek, ek−1, . . . , e1 = e1, . . . , ek−1, ek. We denote by C(p) the number of
edge traversals performed by an agent during the execution of a procedure p.



S. Bouchard, M. Bournat, Y. Dieudonné, S. Dubois, and F. Petit 8:7

Consider two distinct nodes u and v. We define a specific path from u to v, denoted
P (u, v), as follows. If there exists a unique shortest path from u to v, this shorthest path is
P (u, v). Otherwise, consider the smallest rectangle R(u,v) such that u and v are two of its
corners. P (u, v) is the unique path among the shortest path from u to v that traverses all
the edges on the northern side of R(u,v). Note that P (u, v) = P (v, u).

3 Idea of the algorithm

3.1 Informal Description in a Nutshell . . .

We aim at achieving rendezvous of two asynchronous mobile agents in an infinite grid and in
a deterministic way. It is well known that solving rendezvous deterministically is impossible
in some symmetric graphs (like a basic grid) unless both agents are given distinct identifiers
called labels. We use them to break the symmetry, i.e., in our context, to make the agents
follow different routes. The idea is to make each agent “read” its label binary representation,
a bit after another from the most to the least significant bits, and for each bit it reads, follow
a route depending on the read bit. Our algorithm ensures rendezvous during some of the
periods when they follow different routes i.e., when the two agents process two different bits.

Furthermore, to design the routes that both agents will follow, our approach would require
to know an upper bound on two parameters, namely the initial distance between the agents
and the length (of the binary representation) of the shortest label. As we suppose that the
agents have no knowledge of these parameters, they both perform successive “assumptions”,
in the sequel called phases, in order to find out such an upper bound. Roughly speaking,
each agent attempts to estimate such an upper bound by successive tests, and for each of
these tests, acts as if the upper bound estimation was correct. Both agents first perform
Phase 0. When Phase i does not lead to rendezvous, they perform Phase i+ 1, and so on.
More precisely, within Phase i, the route of each agent is built in such a way that it ensures
rendezvous if 2i is a good upper bound on the parameters of the problem. Hence, in our
approach two requirements are needed: both agents are assumed (1) to process two different
bits (i.e., 0 and 1) almost concurrently and (2) to perform Phase i = α almost at the same
time – where α is the smallest integer such that the two aforementioned parameters are
upper bounded by 2α.

However, to meet these requirements, we have to face two major issues. First, since
the adversary can vary both agent speeds, the idea described above does not prevent the
adversary from making the agents always process the same type of bit at the same time.
Besides, the route cost depends on the phase number, and thus, if an agent were performing
some Phase i with i exponential in the initial distance and in the length of the binary
representation of the smallest label, then our algorithm would not be polynomial. To tackle
these two issues, we use a mechanism that prevents the adversary from making an agent
execute the algorithm arbitrarily faster than the other without meeting. Each of both these
issues is circumvent via a specific “synchronization mechanism”. Roughly speaking, the first
one makes the agents read and process the bits of the binary representation of their labels at
quite the same speed, while the second ensures that they start Phase α at almost the same
time. This is particularly where our feat of strength is: orchestrating in a subtle manner
these synchronizations in a fully asynchronous context while ensuring a polynomial cost. Now
that we have described the very high level idea of our algorithm, let us give more details.

DISC 2017



8:8 Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm

3.2 Under the hood

The approach described above allows us to solve rendezvous when there exists an index for
which the binary representations of both labels differ. However, this is not always the case
especially when a binary representation is a prefix of the other one (e.g., 100 and 1000).
Hence, instead of considering its own label, each agent will consider a transformed label:
The transformation borrowed from [16] will guarantee the existence of the desired difference
over the new labels. In the rest of this description, we assume for convenience that the initial
Manhattan distance D separating the agents is at least the length of the shortest binary
representation of the two transformed labels (the complementary case adds an unnecessary
level of complexity to understand the intuition).

As mentioned previously, our solution (cf. Algorithm 1 in Section 4) works in phases
numbered 0, 1, 2, 3, 4, . . . During Phase i (cf. Procedure Assumption called at line 3 in
Algorithm 1), the agent supposes that the initial distance D is at most 2i and processes
one by one the first 2i bits of its transformed label: In the case where 2i is greater than
the binary representation of its transformed label, the agent will consider that each of the
last “missing” bits is 0. When processing a bit, the agent executes a particular route which
depends on the bit value and the phase number. The route related to bit 0 (relying in
particular on Procedure Berry called at line 9 in Algorithm 2) and the route related to
bit 1 (relying in particular on on Procedure Cloudberry called at line 11 in Algorithm 2)
are obviously different and designed in such a way that if both these routes are executed
almost simultaneously by two agents within a phase corresponding to a correct upper bound,
then rendezvous occurs by the time any of them has been completed. In the light of this, if
we denote by α the smallest integer such that 2α ≥ D, it turns out that an ideal situation
would be that the agents concurrently start phase α and process the bits at quite the same
rate within this phase. Indeed, we would then obtain the occurrence of rendezvous by the
time the agents complete the process of the jth bit of their transformed label in phase α,
where j is the smallest index for which the binary representations of their transformed labels
differ. However, getting such an ideal situation in presence of a fully asynchronous adversary
appears to be really challenging. This is where the two synchronization mechanisms briefly
mentioned above come into the picture.

If the agents start Phase α approximately at the same time, the first synchronization
mechanism (cf. Procedure RepeatSeed called at line 15 in Algorithm 2) permits to force the
adversary to make the agents process their respective bits at similar speed within Phase α, as
otherwise rendezvous would occur prematurely during this phase before the process by any
agent of the jth bit. This constraint is imposed on the adversary by dividing each bit process
into some predefined steps and by ensuring that after each step s of the kth bit process,
for any k ≤ 2α, an agent follows a specific route that forces the other agent to complete
the step s of its kth bit process. This route, on which the first synchronization is based, is
constructed by relying on the following simple principle: If an agent performs a given route
X included in a given area S of the basic grid, then the other agent can “push it” over X.
In other words, unless rendezvous occurs, the agent forces the other to complete its route X
by covering S a number of times at least equal to the number of edge traversals involved in
route X (each covering of S allows to traverse all the edges of S at least once). Hence, one
of the major difficulties we have to face lies in the setting up of the second synchronization
mechanism guaranteeing that the agents start Phase α around the same time. At first glance,
it might be tempting to use an analogous principle to the one used for dealing with the
first synchronization. Indeed, if an agent a1 follows a route covering r times an area Y of
the grid, such that Y is where the first α− 1 phases of an agent a2 take place and r is the



S. Bouchard, M. Bournat, Y. Dieudonné, S. Dubois, and F. Petit 8:9

maximal number of edge traversals an agent can make during these phases, then agent a1
pushes agent a2 to complete its first α− 1 phases and to start Phase α. Nevertheless, a strict
application of this principle to the case of the second synchronization directly leads to an
algorithm having a cost that is superpolynomial in D and the length of the smallest label,
due to a cumulative effect that does not appear for the case of the first synchronization. As
a consequence, to force an agent to start its Phase α, the second synchronization mechanism
does not depend on the kind of route described above, but on a much more complicated route
that permits an agent to “push” the second one. This works by considering the “pattern”
that is drawn on the grid by the second agent rather than just the number of edges that
are traversed (cf. Procedure Harvest called at line 1 in Algorithm 2). This is the most
tricky part of our algorithm, one of the main idea of which relies in particular on the fact
that some routes made of an arbitrarily large sequence of edge traversals can be pushed at a
relative low cost by some other routes that are of comparatively small length, provided they
are judiciously chosen. Let us illustrate this point through the following example. Consider
an agent a1 following from a node v1 an arbitrarily large sequence of Xi, in which each Xi

corresponds either to AA or BB where A and B are any routes (A and B corresponding to
their respective backtrack i.e., the sequence of edge traversals followed in the reverse order).
An agent a2 starting from an initial node v2 located at a distance at most d from v1 can
force agent a1 to finish its sequence of Xi (or otherwise rendezvous occurs), regardless of
the number of Xi, simply by executing AABB from each node at distance at most d from
v2. To support this claim, let us suppose by contradiction that it does not hold. At some
point, agent a2 necessarily follows AABB from v1. However, note that if either agent starts
following AA (resp. BB) from node v1 while the other is following AA (resp. BB) from
node v1, then the agents meet. Indeed, this implies that the more ahead agent eventually
follows A (resp. B) from a node v3 to v1 while the other is following A (resp. B) from v1
to v3, which leads to rendezvous. Hence, when agent a2 starts following BB from node
v1, agent a1 is following AA, and is not in v1, so that it has at least started the first edge
traversal of AA. This means that when agent a2 finishes following AA from v1, a1 is following
AA, which implies, using the same arguments as before, that they meet before either of
them completes this route. Hence, in this example, agent a2 can force a1 to complete an
arbitrarily large sequence of edge traversals with a single and simple route. Actually, our
second synchronization mechanism implements this idea (this point is refined in Section 4).
This was way the most complicated to set up, as each part of each route in every phase had
to be orchestrated very carefully to permit in fine this low cost synchronization while still
ensuring rendezvous. However, it is through this original and novel way of moving that we
finally get the polynomial cost.

4 Formal description of our algorithm and its analysis

The purpose of this section is to give the formal description of our solution and the involved
subroutines along with their main objectives and how they work at a high level. The main
algorithm that solves the rendezvous in a basic grid is Algorithm RV (shown in Algorithm 1).
As mentioned in Section 3, we use the label of an agent only when it has been transformed.
Let us describe this transformation that is borrowed from [16]. Let (b0b1 . . . bn−1) be the
binary representation of the label of an agent. We define its transformed label as the binary
sequence (b0b0b1b1 . . . bn−1bn−101). This transformation permits to obtain the following
feature: Given two distinct labels, their transformed labels are never prefixes of each other.
As explained in the previous section, we need such a feature because our solution requires

DISC 2017



8:10 Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm

Algorithm 1 RV
1: d← 1
2: while agents have not met yet do
3: Execute Assumption(d)
4: d← 2d
5: end while

that at some point both agents follow different routes by processing different bit values.
Algorithm RV makes use of a subroutine, i.e., Procedure Assumption. When an agent

executes this procedure with a parameter α that is a “good” assumption i.e., that upperbounds
the initial distance D and the value j of the smallest bit position for which both transformed
labels differ, we have the guarantee that rendezvous occurs by the end of this execution. In
the rest of this section, we assume that α is the smallest good assumption that upperbounds
D and j. The code of Procedure Assumption is given in Algorithm 2. It makes use, for
technical reasons, of the sequence r that is defined below.

∀ power of two i, ρ(i) = 2i4 and r(i) = ρ(i) + 3i

Procedure Assumption can be divided into two parts. The first part consists of the
execution of Procedure Harvest (line 1 of Algorithm 2) and corresponds to the second
synchronization mechanism mentioned in Section 3. The main feature of this procedure is the
following: when the earlier agent finishes the execution of Harvest(α) within the execution
of Assumption(α), we have the guarantee that the later agent has at least started to execute
Assumption with parameter α (actually, as explained below, we have even the guarantee that
most of Harvest(α) has been executed by the later agent). Procedure Harvest is presented
below. The second part of Procedure Assumption (cf. lines 2− 19 of Algorithm 2) consists
in processing the bits of the transformed label one by one. More precisely when processing a
given bit in a call to Procedure Assumption(d), the agent acts in steps 0, 1, . . . , 2d(d+ 1):
After each of these steps, the agent executes Pattern RepeatSeed whose role is described
below. In each of these steps, the agent executes Berry (resp. Cloudberry) if the bit it is
processing is 0 (resp. 1). These patterns of moves (cf. Algorithms 5 and 6) are made in such
a way that rendezvous occurs by the time any agent finishes the process of its jth bit in
Assumption(α) if we have the following synchronization property. Each time any of both
agents starts executing a step s during the process of its jth bit in Assumption(α), the other
agent has finished the execution of either step s− 1 in the jth bit process of Assumption(α)
if s > 0, or the last step of the (j − 1)th bit process of Assumption(α) if s = 0 (j > 0 in
view of the label transformation given above). To obtain such a synchronization, an agent
executes what we called the first synchronization mechanism in the previous section (cf.
line 15 in Algorithm 2) after each step of a bit process. Actually, this mechanism relies
on procedure RepeatSeed, the code of which is given in Algorithm 8. Note that the total
number of steps, and thus of executions of RepeatSeed, in Assumption(α) is 2α2(α+ 1) +α.
For every 0 ≤ i ≤ 2α2(α+ 1) + α, the ith execution of RepeatSeed in Assumption(α) by an
agent permits to force the other agent to finish the execution of its ith step in Assumption(α)
by repeating a pattern Seed (its main purpose is described just above its code given by
Algorithm 7): With the appropriate parameters, this pattern Seed covers any pattern
(Berry or Cloudberry) made in the ith step of Assumption(α) and the number of times it
is repeated is at least the maximal number of edge traversals we can make in the ith step of
Assumption(α).



S. Bouchard, M. Bournat, Y. Dieudonné, S. Dubois, and F. Petit 8:11

Algorithm 2 Assumption(d)
1: Execute Harvest(d)
2: radius← r(d)
3: i← 1
4: while i ≤ d do
5: j ← 0
6: while j ≤ 2d(d+ 1) do
7: // Begin of step j
8: if the length of the transformed label is strictly greater than i, or its ith bit is 0

then
9: Execute Berry(radius, d)

10: else
11: Execute Cloudberry(radius, d, d, j)
12: end if
13: // End of step j
14: radius← radius+ 3d
15: Execute RepeatSeed(radius, C(Cloudberry(radius− 3d, d, d, j)))
16: j ← j + 1
17: end while
18: i← i+ 1
19: end while

Algorithm 3 gives the code of Procedure Harvest. As in Procedure Assumption, it makes
use, for technical reasons, of two sequences ρ and r that are defined above. ProcedureHarvest
is made of two parts: the executions of Procedure PushPattern (lines 1− 3 of Algorithm 3),
and the calls to the patterns Cloudberry and RepeatSeed (lines 4−5 of Algorithm 3). When
Harvest is executed with parameter α (which is a good assumption), the first part ensures
that the later agent has at least completed every execution of Assumption with a parameter
that is smaller than α, while the second part ensures that the later agent has completed
almost the entire execution of Harvest(α) (more precisely, when the earlier agent finishes
the second part, we have the guarantee that it remains for the later agent to execute at most
the last line before completing its own execution of Harvest(α)).

To give further details on Procedure Harvest, let us first describe Procedure Push-
Pattern (its code is given in Algorithm 4). When the earlier agent completes the execution
of PushPattern(2i, d) with i some power of two, assuming that the later agent had already
completed Assumption(i), we have the guarantee that the later agent has completed its
execution of Assumption(2i). To ensure this, we regard the execution of Assumption(2i) as
a sequence of calls to basic patterns (namely RepeatSeed, Berry and Cloudberry), which
is formally defined in Definition 2. This sequence is what we meant when talking about
“the pattern drawn on the grid” in Section 3. For each basic pattern p1 in the sequence,
the earlier agent executes another pattern p2 at the end of which we ensure that the later
agent has completed p1. If p1 is either Pattern Berry or Pattern Cloudberry, then p2 is
Pattern RepeatSeed: we use the same idea here as for the first synchronization mechanism.
If p1 is Pattern RepeatSeed, then p2 is Pattern Berry, relying on a property of the route XX
(with X any non-empty route) introduced in the last paragraph of Subsection 3.2: if both
agents follow this route concurrenly from the same node, then they meet. Pattern Seed can
be seen as such a route, and Procedure Berry (whose code is shown in Algorithm 5) consists

DISC 2017



8:12 Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm

Algorithm 3 Harvest(d)
1: for i← 1; i < d; i← 2i do
2: Execute PushPattern(i, d)
3: end for
4: Execute Cloudberry(ρ(d), d, d, 0)
5: Execute RepeatSeed(r(d), C(Cloudberry(ρ(d), d, d, 0)))

in executing Pattern Seed from each node at distance at most α. Hence, unless they meet,
the later agent completes its execution of Pattern RepeatSeed before the earlier one starts
executing Seed from the same node. Note that PushPattern uses as many patterns as the
number of basic patterns in the sequence it is supposed to push: this and the fact of doubling
the value of the input parameter of Procedure Assumption in Algorithm 1 contribute in
particular to keep the polynomiality of our solution.

Thus, once the earlier agent completes the first part of Harvest(α), the later one has
at least started the execution of Assumption(α) (and thus of the first part of Harvest(α)).
At this point, we might think at first glance that we just shifted the problem. Indeed, the
number of edge traversals that have to be made to complete all the executions of Assumption
prior to Assumption(α) is quite the same, if not higher, than the number of edge traversals
that have to be made when executing the first part of Harvest(α). Hence the difference
between both agents in terms of edge traversals has not been improved here. However, a
crucial and decisive progress has nonetheless been done: contrary a priori to the series of
Assumption executed before Assumption(d), the first part of Harvest(α) can be pushed at
low cost via the execution of Pattern Cloudberry (line 4 of Algorithm 3) by the earlier agent.
Actually this pattern corresponds to the kind of route, described at the end of Subsection 3.2
for the second synchronization mechanism, which is of small length compared to the sequence
of patterns it can push. Indeed, the first part of Harvest(α) can be viewed as a “large”
sequence of Patterns Seed and Berry: however Seed and Berry can be seen (by analogy with
Subsection 3.2) as routes of the form AA and BB respectively, while Pattern Cloudberry
executes Seed and Berry (i.e., AABB) once from at least each node at distance at most α.

Note that when the earlier agent has completed the execution of Pattern Cloudberry

in Harvest(α), the later agent has at least started the execution of Pattern Cloudberry

in Harvest(α). Hence, there is still a difference between both agents, but it has been
considerably reduced: it is now relatively small so that we can handle it pretty easily
afterwards.

I Definition 2 (Basic and Perfect Decomposition). Given a call P to an algorithm, we say
that the basic decomposition of P , denoted by BD(P ), is P itself if P corresponds to a basic
pattern, the type of which belongs to {RepeatSeed;Berry;Cloudberry}. Otherwise, if during
its execution P makes no call then BD(P ) =⊥, else BD(P ) = BD(x1),BD(x2), . . . ,BD(xn)
where x1, x2, . . . , xn is the sequence (in the order of execution) of all the calls in P that are
children of P . We say that BD(P ) is a perfect decomposition if it does not contain any ⊥.

I Remark. The basic decomposition of every call to Procedure Assumption is perfect.

Starting from a node v, the main purpose of Seed(x) is to visit all nodes of the grid at
distance at most x from v and to traverse all edges of the grid linking two nodes at distance
at most x from v (informally, the procedure permits to cover an area of radius x).

The following two theorems state the validity and the polynomial cost of Algorithm RV
(their proofs will appear in the journal version of the paper).



S. Bouchard, M. Bournat, Y. Dieudonné, S. Dubois, and F. Petit 8:13

Algorithm 4 PushPattern(i, d)
1: for each p in BD(Assumption(i)) do
2: if p is a call to pattern RepeatSeed with value x as first parameter then
3: Execute Berry(x, d)
4: else
5: /* pattern p is either a call to pattern Berry or a call to pattern Cloudberry (in

view of the above remark) and has at least two parameters */
6: Let x (resp. y) be the first (resp. the second) parameter of p
7: Execute RepeatSeed(d+ x+ 2y, C(Cloudberry(x, y, y, 0)))
8: end if
9: end for

Algorithm 5 Pattern Berry(x, y)
1: /* First period */
2: Let u be the current node
3: for i← 1; i ≤ x+ y; i← i+ 1 do
4: for j ← 0; j ≤ i; j ← j + 1 do
5: for k ← 0; k ≤ j; k ← k + 1 do
6: for each node v at distance k from u ordered clockwise from the North do
7: Follow P (u, v)
8: Execute Seed(i− j)
9: Follow P (v, u)

10: end for
11: end for
12: end for
13: end for
14: /* Second period */
15: L← the path followed by the agent during the first period
16: Backtrack by following the reverse path L

Algorithm 6 Pattern Cloudberry(x, y, z, h)
1: /* First period */
2: Let u be the current node
3: Let U be the list of nodes at distance at most z from u ordered in the order of the first

visit when applying Seed(z) from node u
4: for i← 0; i ≤ 2z(z + 1); i← i+ 1 do
5: Let v be the node with index h+ i (mod 2z(z + 1) + 1) in U
6: Follow P (u, v)
7: Execute Seed(x)
8: Execute Berry(x, y)
9: Follow P (v, u)

10: end for
11: /* Second period */
12: L← the path followed by the agent during the first period
13: Backtrack by following the reverse path L

DISC 2017



8:14 Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm

Algorithm 7 Pattern RepeatSeed(x, n)
1: Execute n times Pattern Seed(x)

Algorithm 8 Pattern Seed(x)
1: /* First period */
2: for i← 1; i ≤ x; i← i+ 1 do
3: /* Phase i */
4: Perform (N(SE)i(WS)i(NW )i(EN)i)
5: end for
6: /* Second period */
7: L← the path followed by the agent during the first period
8: Backtrack by following the reverse path L

I Theorem 3. Algorithm RV solves the problem of rendezvous in the basic grid.

I Theorem 4. The cost of Algorithm RV is polynomial in D and l, where D is the initial
(Manhattan) distance separating both agents and l is the length of the shortest label.

5 Conclusion

From Theorems 1, 3 and 4, we obtain the following result concerning the task of approach.

I Theorem 5. The task of approach can be solved at cost polynomial in the unknown initial
distance ∆ separating the agents and in the length of (the binary representation) of the
shortest of their labels.

Throughout the paper, we made no attempt at optimizing the cost. Actually, as the
acute reader will have noticed, our main concern was only to prove the polynomiality. Hence,
a natural open problem is to find out the optimal cost to solve the task of approach. This
would be all the more important as in turn we could compare this optimal cost with the
cost of solving the same task with agents that can position themselves in a global system
of coordinates (the almost optimal cost for this case is given in [9]) in order to determine
whether the use of such a system is finally relevant to minimize the travelled distance.

References
1 Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for autonomous mobile

robots. SIAM J. Comput., 36(1):56–82, 2006.
2 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous. Int. Series in

Operations Research and Management Science, Kluwer Academic Publishers, 2003.
3 Evangelos Bampas, Jurek Czyzowicz, Leszek Gasieniec, David Ilcinkas, and Arnaud La-

bourel. Almost optimal asynchronous rendezvous in infinite multidimensional grids. In
Distributed Computing, 24th International Symposium, DISC 2010, Proceedings, pages 297–
311, 2010.

4 Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. Byzantine gathering in
networks. Distributed Computing, 29(6):435–457, 2016.

5 Jérémie Chalopin, Yoann Dieudonné, Arnaud Labourel, and Andrzej Pelc. Rendezvous in
networks in spite of delay faults. Distributed Computing, 29(3):187–205, 2016.



S. Bouchard, M. Bournat, Y. Dieudonné, S. Dubois, and F. Petit 8:15

6 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed
computing by mobile robots: Gathering. SIAM J. Comput., 41(4):829–879, 2012.

7 Reuven Cohen and David Peleg. Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput., 34(6):1516–1528, 2005.

8 Reuven Cohen and David Peleg. Convergence of autonomous mobile robots with inaccurate
sensors and movements. SIAM J. Comput., 38(1):276–302, 2008.

9 Andrew Collins, Jurek Czyzowicz, Leszek Gasieniec, and Arnaud Labourel. Tell me where I
am so I can meet you sooner. In Automata, Languages and Programming, 37th International
Colloquium, ICALP 2010, Proceedings, Part II, pages 502–514, 2010.

10 Jurek Czyzowicz, Adrian Kosowski, and Andrzej Pelc. How to meet when you forget:
log-space rendezvous in arbitrary graphs. Distributed Computing, 25(2):165–178, 2012.

11 Jurek Czyzowicz, Andrzej Pelc, and Arnaud Labourel. How to meet asynchronously (al-
most) everywhere. ACM Transactions on Algorithms, 8(4):37, 2012.

12 Gianlorenzo D’Angelo, Gabriele Di Stefano, and Alfredo Navarra. Gathering on rings under
the look-compute-move model. Distributed Computing, 27(4):255–285, 2014.

13 Shantanu Das, Dariusz Dereniowski, Adrian Kosowski, and Przemyslaw Uznanski. Rendez-
vous of distance-aware mobile agents in unknown graphs. In Structural Information and
Communication Complexity - 21st International Colloquium, SIROCCO 2014, Proceedings,
pages 295–310, 2014.

14 Shantanu Das, Flaminia L. Luccio, and Euripides Markou. Mobile agents rendezvous in
spite of a malicious agent. In Algorithms for Sensor Systems - 11th International Sym-
posium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS
2015, Revised Selected Papers, pages 211–224, 2015.

15 Xavier Défago, Maria Gradinariu, Stéphane Messika, and Philippe Raipin Parvédy. Fault-
tolerant and self-stabilizing mobile robots gathering. In Distributed Computing, 20th Inter-
national Symposium, DISC 2006, Proceedings, pages 46–60, 2006.

16 Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej Pelc. Deterministic
rendezvous in graphs. Algorithmica, 46(1):69–96, 2006.

17 Yoann Dieudonné and Andrzej Pelc. Deterministic polynomial approach in the plane. Dis-
tributed Computing, 28(2):111–129, 2015.

18 Yoann Dieudonné and Andrzej Pelc. Anonymous meeting in networks. Algorithmica,
74(2):908–946, 2016.

19 Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mischief. ACM
Transactions on Algorithms, 11(1):1, 2014.

20 Yoann Dieudonné, Andrzej Pelc, and Vincent Villain. How to meet asynchronously at
polynomial cost. SIAM J. Comput., 44(3):844–867, 2015.

21 Yoann Dieudonné and Franck Petit. Self-stabilizing gathering with strong multiplicity
detection. Theor. Comput. Sci., 428:47–57, 2012.

22 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Gathering of
asynchronous robots with limited visibility. Theor. Comput. Sci., 337(1-3):147–168, 2005.

23 Pierre Fraigniaud and Andrzej Pelc. Deterministic rendezvous in trees with little memory.
In Distributed Computing, 22nd International Symposium, DISC 2008, Proceedings, pages
242–256, 2008.

24 Pierre Fraigniaud and Andrzej Pelc. Delays induce an exponential memory gap for rendez-
vous in trees. ACM Transactions on Algorithms, 9(2):17, 2013.

25 Taisuke Izumi, Samia Souissi, Yoshiaki Katayama, Nobuhiro Inuzuka, Xavier Défago, Koi-
chi Wada, and Masafumi Yamashita. The gathering problem for two oblivious robots with
unreliable compasses. SIAM J. Comput., 41(1):26–46, 2012.

26 Dariusz R. Kowalski and Adam Malinowski. How to meet in anonymous network. Theor.
Comput. Sci., 399(1-2):141–156, 2008.

DISC 2017



8:16 Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm

27 Evangelos Kranakis, Danny Krizanc, and Sergio Rajsbaum. Mobile agent rendezvous: A
survey. In Structural Information and Communication Complexity, 13th International Col-
loquium, SIROCCO 2006, Proceedings, pages 1–9, 2006.

28 Gianluca De Marco, Luisa Gargano, Evangelos Kranakis, Danny Krizanc, Andrzej Pelc,
and Ugo Vaccaro. Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci.,
355(3):315–326, 2006.

29 Avery Miller and Andrzej Pelc. Fast rendezvous with advice. Theor. Comput. Sci., 608:190–
198, 2015.

30 Avery Miller and Andrzej Pelc. Time versus cost tradeoffs for deterministic rendezvous in
networks. Distributed Computing, 29(1):51–64, 2016.

31 Linda Pagli, Giuseppe Prencipe, and Giovanni Viglietta. Getting close without touching:
near-gathering for autonomous mobile robots. Distributed Computing, 28(5):333–349, 2015.

32 Thomas Schelling. The Strategy of Conflict. Oxford University Press, Oxford, 1960.
33 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation

of geometric patterns. SIAM J. Comput., 28(4):1347–1363, 1999.
34 Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts, and strongly

universal exploration sequences. ACM Transactions on Algorithms, 10(3):12, 2014.


	Introduction
	Model and Problem
	Our Results
	Related Work
	Roadmap

	Preliminaries
	Idea of the algorithm
	Informal Description in a Nutshell …
	Under the hood

	Formal description of our algorithm and its analysis
	Conclusion

