21 research outputs found

    A chimerical phagocytosis model reveals the recruitment by Sertoli cells of autophagy for the degradation of ingested illegitimate substrates

    Get PDF
    Phagocytosis and autophagy are typically dedicated to degradation of substrates of extrinsic and intrinsic origins respectively. Although overlaps between phagocytosis and autophagy were reported, the use of autophagy for ingested substrate degradation by nonprofessional phagocytes has not been described. Blood-separated tissues use their tissue-specific nonprofessional phagocytes for homeostatic phagocytosis. In the testis, Sertoli cells phagocytose spermatid residual bodies produced during germ cell differentiation. In the retina, pigmented epithelium phagocytoses shed photoreceptor tips produced during photoreceptor renewal. Spermatid residual bodies and shed photoreceptor tips are phosphatidylserine-exposing substrates. Activation of the tyrosine kinase receptor MERTK, which is implicated in phagocytosis of phosphatidylserine-exposing substrates, is a common feature of Sertoli and retinal pigmented epithelial cell phagocytosis. The major aim of our study was to investigate to what extent phagocytosis by Sertoli cells may be tissue specific. We analyzed in Sertoli cell cultures that were exposed to either spermatid residual bodies (legitimate substrates) or retina photoreceptor outer segments (illegitimate substrates) the course of the main phagocytosis stages. We show that whereas substrate binding and ingestion stages occur similarly for legitimate or illegitimate substrates, the degradation of illegitimate but not of legitimate substrates triggers autophagy as evidenced by the formation of double-membrane wrapping, MAP1LC3A-II/LC3-II clustering, SQSTM1/p62 degradation, and by marked changes in ATG5, ATG9 and BECN1/Beclin 1 protein expression profiles. The recruitment by nonprofessional phagocytes of autophagy for the degradation of ingested cell-derived substrates is a novel feature that may be of major importance for fundamentals of both apoptotic substrate clearance and tissue homeostasis

    The Rho GDI Rdi1 regulates Rho GTPases by distinct mechanisms

    Get PDF
    © 2008 by The American Society for Cell Biology. Under the License and Publishing Agreement, authors grant to the general public, effective two months after publication of (i.e.,. the appearance of) the edited manuscript in an online issue of MBoC, the nonexclusive right to copy, distribute, or display the manuscript subject to the terms of the Creative Commons–Noncommercial–Share Alike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0).The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3β homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.Deutsche Forschungsgemeinschaf

    Small G proteins and the neutrophil NADPH oxidase.

    No full text
    International audienceThe NADPH oxidase of phagocytic cells is a multimeric enzyme complex activated during phagocytosis. It catalyzes the production of the superoxide anion, precursor of many toxic oxygen metabolites involved in the defense against microorganisms. The enzyme becomes active after assembly on a membrane bound flavocytochrome b of cytosolic factors p47 phox, p67 phox and p40 phox and of low molecular mass GTP binding proteins. This paper reviews recent results concerning the role of two small G proteins, Rac and Rap 1A in oxidase activation. Native prenylated small G proteins are either in the form of a complex in which the GDP bound G protein is associated with a guanine nucleotide dissociation inhibitor, GDI, or in an active GTP bound form able to trigger the activity of its effector. Rac and Rho share a common GDI. As chemotaxis, under Rho control, and oxidase activation, under Rac control, show mutually exclusive signalling pathways, we propose a model where the GDI would switch from one pathway to the other by sequestering either Rac or Rho

    Myelinosome-like vesicles in human seminal plasma A cryo-electron microscopy study

    No full text
    International audienceSeminal plasma is particularly rich in extracellular vesicles. Myelinosomes are membranous organelles described throughout the seminiferous epithelium of the testis but never reported in semen. Our aim was to determine the presence of myelinosomes in human seminal plasma. Transmission electron microscopy and cryo electron microscopy analysis of standard myelinosome preparation from TM4 Sertoli cells and human seminal plasma samples. We have specified by cryo-EM the morphological aspect of "standard" myelinosomes isolated from the culture media of TM4 Sertoli cells. Vesicles with the same morphological appearance were revealed in human seminal plasma samples. Human seminal plasma contains a population of large EV (average diameter 200 nm) whose morphological appearance resemble those of myelinosomes. Defining the specific biomarkers and functionalities of myelinosome in human seminal plasma are the concerns to be addressed in our further research

    Gap junctional channels are parts of multiprotein complexes

    Get PDF
    AbstractGap junctional channels are a class of membrane channels composed of transmembrane channel-forming integral membrane proteins termed connexins, innexins or pannexins that mediate direct cell-to-cell or cell-to extracellular medium communication in almost all animal tissues. The activity of these channels is tightly regulated, particularly by intramolecular modifications as phosphorylations of proteins and via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signaling enzymes, substrates, and potential effectors (such as channels) into multiprotein signaling complexes that may be anchored to the cytoskeleton. Protein–protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulations). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and highlights the function of these protein–protein interactions in cell physiology and aberrant function in diseases. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions

    Update on the cellular and molecular aspects of cystic fibrosis transmembrane conductance regulator (CFTR) and male fertility

    No full text
    International audienceCFTR protein regulates electrolyte and fluid transport in almost all tissues with exocrine function, including male reproductive tract. Mutation of CFTR gene causes cystic fibrosis (CF), which affects the function of several organs, and impairs male fertility. The role of CFTR protein in different compartments of male reproductive tract (testis, epididymis, sperm) as well as an impact of CFTR mutation(s) on male fertility phenotype is discussed in relation with the choice of optimal technique for Assisted Reproductive Techniques (ART) management

    Myelinosome organelles in the retina of r6/1 huntington disease (Hd) mice: ubiquitous distribution and possible role in disease spreading

    No full text
    International audienceVisual deficit is one of the complications of Huntington disease (HD), a fatal neurological disorder caused by CAG trinucleotide expansions in the gene, leading to the production of mutant Huntingtin (mHTT) protein. Transgenic HD R6/1 mice expressing human HTT exon1 with 115 CAG repeats recapitulate major features of the human pathology and exhibit a degeneration of the retina. Our aim was to gain insight into the ultrastructure of the pathological HD R6/1 retina by electron microscopy (EM). We show that the HD R6/1 retina is enriched with unusual organelles myelinosomes, produced by retinal neurons and glia. Myelinosomes are present in all nuclear and plexiform layers, in the synaptic terminals of photoreceptors, in the processes of retinal neurons and glial cells, and in the subretinal space. In vitro study shows that myelinosomes secreted by human retinal glial Müller MIO-M1 cells transfected with carry EGFP-mHTT-exon1 protein, as revealed by immuno-EM and Western-blotting. Myelinosomes loaded with mHTT-exon1 are incorporated by naive neuronal/neuroblastoma SH-SY5Y cells. This results in the emergence of mHTT-exon1 in recipient cells. This process is blocked by membrane fusion inhibitor MDL 28170. Conclusion: Incorporation of myelinosomes carrying mHTT-exon1 in recipient cells may contribute to HD spreading in the retina. Exploring ocular fluids for myelinosome presence could bring an additional biomarker for HD diagnostics

    eIF5 is a dual function GAP and GDI for eukaryotic translational control

    No full text
    We recently showed in a publication in Nature that the eukaryotic translation initiation factor eIF5 has a second regulatory function and is a GDI (GDP dissociation inhibitor) in addition to its previously characterized role as a GAP (GTPase accelerating protein). These findings provide new insight into the mechanism of translation initiation in eukaryotic cells. Additional findings show that the GDI function is critical for the normal regulation of protein synthesis by phosphorylation of eIF2α at ser51. Because eIF2 phosphorylation is a ubiquitous mode of translational control these results are of broad interest. Here we review these and related studies and suggest they offer further evidence of parallels between the functions of regulators of the translation factor eIF 2 and both heterotrimeric and small GTPases
    corecore