24 research outputs found

    Synthesis and characterization of nanosized Ce1−xbixo2−ή solid solutions for catalytic applications

    Get PDF
    AbstractThis study consists of elaborating and characterizing some nanometric materials in basic of rare-earth oxides by the soft chemistry technique. the first step of this work consists of synthesizing nanometric pure ceria by sol-gel process. In the second one, the Bismuth doped ceria by co-precipitation method was realized in order to obtain ceria-based solid solution, to improve its catalytic property by creation of oxygen vacancies. The solubility limit of Bi2O3 in CeO2 was determined to be around 20 atom %. The effect of thermal treatment temperatures on the average crystallite sizes and lattice parameters was done for pure ceria and Ce1−xBixO2−x/2 (x = 0.15 and 0.2). The different elaborated samples are subject of structural characterization (XRD). Catalytic reactivity of these materials in presence of “air- toxic gas” mixtures is studied by Fourier Transform Infra-Red Spectroscopy (FTIR)

    Structural and Raman Vibrational Studies of CeO

    Get PDF
    A series of ceramics samples belonging to the CeO2-Bi2O3 phase system have been prepared via a coprecipitation route. The crystallized phases were obtained by heating the solid precursors at 600∘C for 6 hours, then quenching the samples. X-ray diffraction analyses show that for x<0.20 a solid solution Ce1−xBixO2−x/2 with fluorine structure is formed. For x ranging between 0.25 and 0.7, a tetragonal ÎČâ€Č phase coexisting with the FCC solid solution is observed. For x ranging between 0.8 and 0.9, a new tetragonal ÎČ phase appears. The ÎČâ€Č phase is postulated to be a superstructure of the ÎČ phase. Finally, close to x=1, the classical monoclinic α Bi2O3 structure is observed. Raman spectroscopy confirms the existence of the phase changes as x varies between 0 and 1

    Electrical Properties of a CeO 2

    Get PDF
    The electrical conduction of a series of polycristalline [(1−x)CeO2⋅x/2Bi2O3] samples has been analyzed using electrical impedance spectroscopy, in the temperature range 25 to 750∘C. Samples have been prepared via a coprecipitation route followed by a pyrolysis process at 600∘C. For compositions x≀0.20, Ce1−xBixO2−x/2 solid solutions, with fluorite cubic structure, are obtained. In the composition range 0.30≀x≀1, the system is biphasic with coexistence of cubic and tetragonal structures. To interpret the Nyquist representations of electrical analyses, various impedance models including constant phase elements and Warburg impedances have been used. In the biphasic range (0.30≀x≀0.7), the conductivity variation might be related to the increasing fraction of two tetragonal ÎČâ€Č and ÎČ-Bi2O3 phases. The stabilization of the tetragonal phase coexisting with substituted ceria close to composition x=0.7 is associated with a high conduction of the mix system CeO2-Bi2O3

    Study of CeO2-Bi2O3 system for catalyst and conductivity applications

    No full text
    Dans le cadre gĂ©nĂ©ral des Ă©tudes de matĂ©riaux multifonctionnels, Ă©lectrolytiques et catalytiques, susceptibles d’ĂȘtre utilisĂ©s au sein de dispositifs de dĂ©tection de gaz, un systĂšme d’oxydes (1-x)CeO2. x/2Bi2O3 avec 0≀x≀1 a Ă©tĂ© Ă©laborĂ© par coprĂ©cipitation puis traitement thermique Ă  600°C. Le systĂšme ainsi obtenu correspondrait Ă  un diagramme de phases original, constituĂ© d’un domaine de solutions solides (Ce1-xBixO2-z pour x ≀ 0,20), d’un domaine multiphasĂ© pour 0,3≀x≀0,7 comportant une phase de type quadratique b’-Bi2O3 et une phase cubique substituĂ©e limite (x=0,20), d’un autre domaine multiphasĂ© pour les compositions 0,8≀x≀1, comportant une phase quadratique b-Bi2O3 et une phase monoclinique. Ces deux phases ont dĂ©jĂ  Ă©tĂ© considĂ©rĂ©es dans la littĂ©rature comme phases mĂ©tastables rĂ©sultant de divers modes de refroidissement de la phase pure Bi2O3. Dans le cas prĂ©sent, la stabilisation de ces deux phases b’ et b en prĂ©sence d’une phase substituĂ©e cubique Ce1-xBixO2-z pourrait ĂȘtre due Ă  la prĂ©sence d’ions cĂ©rium au sein durĂ©seau cristallin de Bi2O3. Les interactions catalytiques entre des Ă©chantillons polycristallins de ce systĂšme avec x variable et des mĂ©langes air-CO et air CH4 ont Ă©tĂ© Ă©tudiĂ©es par spectroscopie infrarouge Ă  transformĂ©e de Fourier dans le domaine 100 Ă  525°C. Il apparait que les composĂ©s riches en cĂ©rium ou riches en bismuth n'ont pas la mĂȘme rĂ©activitĂ© vis-Ă -vis des gaz CH4 ou CO. Cette diversitĂ© de propriĂ©tĂ©s catalytiques pourrait ĂȘtre utilisĂ©e au sein de systĂšmes multicapteurs de gaz.Une Ă©tude de la conduction Ă©lectrique du systĂšme pour x variable a Ă©tĂ© effectuĂ©e par spectroscopie d’impĂ©dance Ă©lectrique entre 100 et 750°C. Les reprĂ©sentations Nyquist des impĂ©dances Ă©lectriques ont Ă©tĂ© interprĂ©tĂ©es en mettant en jeu des modĂšles de type Ă©lĂ©ment de phase constante ou de type Warburg pour prendre en compte l’hĂ©tĂ©rogĂ©nĂ©itĂ© des Ă©chantillons ainsi que les phĂ©nomĂšnes de rĂ©action-diffusion aux Ă©lectrodes. La conductivitĂ© en volume (coeur de grains) augmente avec la composition, avec deux types d’évolutions distinctes : une Ă©volution caractĂ©ristique de la phase substituĂ©e liĂ©e Ă  l’augmentation du taux de lacunes, une Ă©volution dans le systĂšme biphasĂ© avec une forte augmentation de conductivitĂ© au-dessus de x=0,3 et un maximum atteint pour x=0,7. La phase quadratique de type b’-Bi2O3 connue comme phase mĂ©tastable est ainsi stabilisĂ©e au sein de ce systĂšme mixte, au moins Ă  600°C: elle serait Ă  l’origine de la forte conductivitĂ© ionique observĂ©e pour la composition proche de x = 0,7.To develop multifunctional and sensitive materials for gas sensor, catalytic microsystems and electrolytic applications, the multiphase system (1-x).CeO2 + Âœ x.Bi2O3 has been investigated in the bismuth composition range 0≀x≀1. A series of ceramics samples has been prepared via a coprecipitation route followed by a thermal treatment at 600°C. X-ray diffraction analyses showed that, for x ≀ 0.20, a solid solution Ce1- xBixO2-x/2 with fluorine structure was formed. For x ranging between 0.25 and 0.7, a tetragonal b’-Bi2O3 phase coexisting with the solid solution was observed. For x ranging between 0.8 and 0.9, a new tetragonal b'-Bi2O3 phase, closely related to the b' phase was evidenced. Finally, close to x=1, the classical monoclinic a-Bi2O3 structure crystallized. The formation of such intermediate tetragonal b and b’ phases could be due of theprobable presence of cerium cations in the Bi2O3 lattice. The solid–gas interactions between these polycristalline materials and air–CH4 and air–CO flows have been studied as a function of time, temperature and composition x, using Fourier transform infrared (FTIR) analyses of the conversions of CH4 and CO gases into the CO2 gas. For all compositions, a low catalytic reactivity was observed with air–CH4 gas flows, while, for the highest bismuth compositions, a high catalytic reactivity was observed with air–CO gas flows. The electrical conduction of this series of polycrystalline samples has been analyzed using electrical impedance spectroscopy, in the temperature range 25 to 750°C. To interpret the Nyquist representations of electrical analyses, various impedance models including constant phase elements and Warburg impedances have been used. The optimal conduction observed close to composition x=0.7 should be due to the stabilization of the tetragonal b’ Bi2O3 phase. This specific multiphase system could present a high interest in catalytic and electrolytic applications

    Étude du systĂšme CeO2-Bi2O3 pour applications catalytiques et conductimĂ©triques

    No full text
    To develop multifunctional and sensitive materials for gas sensor, catalytic microsystems and electrolytic applications, the multiphase system (1-x).CeO2 + Âœ x.Bi2O3 has been investigated in the bismuth composition range 0≀x≀1. A series of ceramics samples has been prepared via a coprecipitation route followed by a thermal treatment at 600°C. X-ray diffraction analyses showed that, for x ≀ 0.20, a solid solution Ce1- xBixO2-x/2 with fluorine structure was formed. For x ranging between 0.25 and 0.7, a tetragonal b’-Bi2O3 phase coexisting with the solid solution was observed. For x ranging between 0.8 and 0.9, a new tetragonal b'-Bi2O3 phase, closely related to the b' phase was evidenced. Finally, close to x=1, the classical monoclinic a-Bi2O3 structure crystallized. The formation of such intermediate tetragonal b and b’ phases could be due of theprobable presence of cerium cations in the Bi2O3 lattice. The solid–gas interactions between these polycristalline materials and air–CH4 and air–CO flows have been studied as a function of time, temperature and composition x, using Fourier transform infrared (FTIR) analyses of the conversions of CH4 and CO gases into the CO2 gas. For all compositions, a low catalytic reactivity was observed with air–CH4 gas flows, while, for the highest bismuth compositions, a high catalytic reactivity was observed with air–CO gas flows. The electrical conduction of this series of polycrystalline samples has been analyzed using electrical impedance spectroscopy, in the temperature range 25 to 750°C. To interpret the Nyquist representations of electrical analyses, various impedance models including constant phase elements and Warburg impedances have been used. The optimal conduction observed close to composition x=0.7 should be due to the stabilization of the tetragonal b’ Bi2O3 phase. This specific multiphase system could present a high interest in catalytic and electrolytic applications.Dans le cadre gĂ©nĂ©ral des Ă©tudes de matĂ©riaux multifonctionnels, Ă©lectrolytiques et catalytiques, susceptibles d’ĂȘtre utilisĂ©s au sein de dispositifs de dĂ©tection de gaz, un systĂšme d’oxydes (1-x)CeO2. x/2Bi2O3 avec 0≀x≀1 a Ă©tĂ© Ă©laborĂ© par coprĂ©cipitation puis traitement thermique Ă  600°C. Le systĂšme ainsi obtenu correspondrait Ă  un diagramme de phases original, constituĂ© d’un domaine de solutions solides (Ce1-xBixO2-z pour x ≀ 0,20), d’un domaine multiphasĂ© pour 0,3≀x≀0,7 comportant une phase de type quadratique b’-Bi2O3 et une phase cubique substituĂ©e limite (x=0,20), d’un autre domaine multiphasĂ© pour les compositions 0,8≀x≀1, comportant une phase quadratique b-Bi2O3 et une phase monoclinique. Ces deux phases ont dĂ©jĂ  Ă©tĂ© considĂ©rĂ©es dans la littĂ©rature comme phases mĂ©tastables rĂ©sultant de divers modes de refroidissement de la phase pure Bi2O3. Dans le cas prĂ©sent, la stabilisation de ces deux phases b’ et b en prĂ©sence d’une phase substituĂ©e cubique Ce1-xBixO2-z pourrait ĂȘtre due Ă  la prĂ©sence d’ions cĂ©rium au sein durĂ©seau cristallin de Bi2O3. Les interactions catalytiques entre des Ă©chantillons polycristallins de ce systĂšme avec x variable et des mĂ©langes air-CO et air CH4 ont Ă©tĂ© Ă©tudiĂ©es par spectroscopie infrarouge Ă  transformĂ©e de Fourier dans le domaine 100 Ă  525°C. Il apparait que les composĂ©s riches en cĂ©rium ou riches en bismuth n'ont pas la mĂȘme rĂ©activitĂ© vis-Ă -vis des gaz CH4 ou CO. Cette diversitĂ© de propriĂ©tĂ©s catalytiques pourrait ĂȘtre utilisĂ©e au sein de systĂšmes multicapteurs de gaz.Une Ă©tude de la conduction Ă©lectrique du systĂšme pour x variable a Ă©tĂ© effectuĂ©e par spectroscopie d’impĂ©dance Ă©lectrique entre 100 et 750°C. Les reprĂ©sentations Nyquist des impĂ©dances Ă©lectriques ont Ă©tĂ© interprĂ©tĂ©es en mettant en jeu des modĂšles de type Ă©lĂ©ment de phase constante ou de type Warburg pour prendre en compte l’hĂ©tĂ©rogĂ©nĂ©itĂ© des Ă©chantillons ainsi que les phĂ©nomĂšnes de rĂ©action-diffusion aux Ă©lectrodes. La conductivitĂ© en volume (coeur de grains) augmente avec la composition, avec deux types d’évolutions distinctes : une Ă©volution caractĂ©ristique de la phase substituĂ©e liĂ©e Ă  l’augmentation du taux de lacunes, une Ă©volution dans le systĂšme biphasĂ© avec une forte augmentation de conductivitĂ© au-dessus de x=0,3 et un maximum atteint pour x=0,7. La phase quadratique de type b’-Bi2O3 connue comme phase mĂ©tastable est ainsi stabilisĂ©e au sein de ce systĂšme mixte, au moins Ă  600°C: elle serait Ă  l’origine de la forte conductivitĂ© ionique observĂ©e pour la composition proche de x = 0,7

    SĂ©mantique de l'antonymie en arabe classique

    No full text
    STRASBOURG-B.N.U.S. (674821001) / SudocSudocFranceF

    La dénonciation de la condition de la femme au Maroc ((1980-2009))

    No full text
    Cette recherche est une tentative pour comprendre la vague de dénonciation de la condition de la femme au Maroc. Le roman marocain contemporain constitue une base essentielle de la thÚse. La réflexion est menée selon une conception de l'oeuvre littéraire en tant que "Représentation". Le cinéma et les travaux de recherches constituent également un moyen de dévoilement et de dénonciation de la condition féminine.STRASBOURG-B.N.U.S. (674821001) / SudocSudocFranceF

    Étude du systĂšme CeO2-Bi2O3 pour applications catalytiques et conductimĂ©triques

    No full text
    Dans le cadre gĂ©nĂ©ral des Ă©tudes de matĂ©riaux multifonctionnels, Ă©lectrolytiques et catalytiques, susceptibles d ĂȘtre utilisĂ©s au sein de dispositifs de dĂ©tection de gaz, un systĂšme d oxydes (1-x)CeO2. x/2Bi2O3 avec 0<=x<=1 a Ă©tĂ© Ă©laborĂ© par coprĂ©cipitation puis traitement thermique Ă  600C. Le systĂšme ainsi obtenu correspondrait Ă  un diagramme de phases original, constituĂ© d un domaine de solutions solides (Ce1-xBixO2-z pour x 0,20), d un domaine multiphasĂ© pour 0,3<=x<=0,7 comportant une phase de type quadratique b -Bi2O3 et une phase cubique substituĂ©e limite (x=0,20), d un autre domaine multiphasĂ© pour les compositions 0,8<=x<=1, comportant une phase quadratique b-Bi2O3 et une phase monoclinique. Ces deux phases ont dĂ©jĂ  Ă©tĂ© considĂ©rĂ©es dans la littĂ©rature comme phases mĂ©tastables rĂ©sultant de divers modes de refroidissement de la phase pure Bi2O3. Dans le cas prĂ©sent, la stabilisation de ces deux phases b et b en prĂ©sence d une phase substituĂ©e cubique Ce1-xBixO2-z pourrait ĂȘtre due Ă  la prĂ©sence d ions cĂ©rium au sein durĂ©seau cristallin de Bi2O3. Les interactions catalytiques entre des Ă©chantillons polycristallins de ce systĂšme avec x variable et des mĂ©langes air-CO et air CH4 ont Ă©tĂ© Ă©tudiĂ©es par spectroscopie infrarouge Ă  transformĂ©e de Fourier dans le domaine 100 Ă  525C. Il apparait que les composĂ©s riches en cĂ©rium ou riches en bismuth n'ont pas la mĂȘme rĂ©activitĂ© vis-Ă -vis des gaz CH4 ou CO. Cette diversitĂ© de propriĂ©tĂ©s catalytiques pourrait ĂȘtre utilisĂ©e au sein de systĂšmes multicapteurs de gaz.Une Ă©tude de la conduction Ă©lectrique du systĂšme pour x variable a Ă©tĂ© effectuĂ©e par spectroscopie d impĂ©dance Ă©lectrique entre 100 et 750C. Les reprĂ©sentations Nyquist des impĂ©dances Ă©lectriques ont Ă©tĂ© interprĂ©tĂ©es en mettant en jeu des modĂšles de type Ă©lĂ©ment de phase constante ou de type Warburg pour prendre en compte l hĂ©tĂ©rogĂ©nĂ©itĂ© des Ă©chantillons ainsi que les phĂ©nomĂšnes de rĂ©action-diffusion aux Ă©lectrodes. La conductivitĂ© en volume (coeur de grains) augmente avec la composition, avec deux types d Ă©volutions distinctes : une Ă©volution caractĂ©ristique de la phase substituĂ©e liĂ©e Ă  l augmentation du taux de lacunes, une Ă©volution dans le systĂšme biphasĂ© avec une forte augmentation de conductivitĂ© au-dessus de x=0,3 et un maximum atteint pour x=0,7. La phase quadratique de type b -Bi2O3 connue comme phase mĂ©tastable est ainsi stabilisĂ©e au sein de ce systĂšme mixte, au moins Ă  600C: elle serait Ă  l origine de la forte conductivitĂ© ionique observĂ©e pour la composition proche de x = 0,7.To develop multifunctional and sensitive materials for gas sensor, catalytic microsystems and electrolytic applications, the multiphase system (1-x).CeO2 + x.Bi2O3 has been investigated in the bismuth composition range 0<=x<=1. A series of ceramics samples has been prepared via a coprecipitation route followed by a thermal treatment at 600C. X-ray diffraction analyses showed that, for x <= 0.20, a solid solution Ce1- xBixO2-x/2 with fluorine structure was formed. For x ranging between 0.25 and 0.7, a tetragonal b -Bi2O3 phase coexisting with the solid solution was observed. For x ranging between 0.8 and 0.9, a new tetragonal b'-Bi2O3 phase, closely related to the b' phase was evidenced. Finally, close to x=1, the classical monoclinic a-Bi2O3 structure crystallized. The formation of such intermediate tetragonal b and b phases could be due of theprobable presence of cerium cations in the Bi2O3 lattice. The solid gas interactions between these polycristalline materials and air CH4 and air CO flows have been studied as a function of time, temperature and composition x, using Fourier transform infrared (FTIR) analyses of the conversions of CH4 and CO gases into the CO2 gas. For all compositions, a low catalytic reactivity was observed with air CH4 gas flows, while, for the highest bismuth compositions, a high catalytic reactivity was observed with air CO gas flows. The electrical conduction of this series of polycrystalline samples has been analyzed using electrical impedance spectroscopy, in the temperature range 25 to 750C. To interpret the Nyquist representations of electrical analyses, various impedance models including constant phase elements and Warburg impedances have been used. The optimal conduction observed close to composition x=0.7 should be due to the stabilization of the tetragonal b Bi2O3 phase. This specific multiphase system could present a high interest in catalytic and electrolytic applications.TOULON-Bibliotheque electronique (830629901) / SudocSudocFranceF

    Analyse méthodique d'un texte éclaté de Rachid el Daïf (de la connotation à la structure)

    No full text
    Bureau de recherches géologiques et miniÚres - Orléans (brgm) / SudocSudocFranceF
    corecore