23 research outputs found

    Ribosomal RNA 2′O-methylation as a novel layer of inter-tumour heterogeneity in breast cancer

    Get PDF
    International audienceRecent epitranscriptomics studies unravelled that ribosomal RNA (rRNA) 2′O-methylation is an additional layer of gene expression regulation highlighting the ribosome as a novel actor of translation control. However, this major finding lies on evidences coming mainly, if not exclusively, from cellular models. Using the innovative next-generation RiboMeth-seq technology, we established the first rRNA 2′O-methylation landscape in 195 primary human breast tumours. We uncovered the existence of compulsory/stable sites, which show limited inter-patient variability in their 2′O-methylation level, which map on functionally important sites of the human ribosome structure and which are surrounded by variable sites found from the second nucleotide layers. Our data demonstrate that some positions within the rRNA molecules can tolerate absence of 2′O-methylation in tumoral and healthy tissues. We also reveal that rRNA 2′O-methylation exhibits intra- and inter-patient variability in breast tumours. Its level is indeed differentially associated with breast cancer subtype and tumour grade. Altogether, our rRNA 2′O-methylation profiling of a large-scale human sample collection provides the first compelling evidence that ribosome variability occurs in humans and suggests that rRNA 2′O-methylation might represent a relevant element of tumour biology useful in clinic. This novel variability at molecular level offers an additional layer to capture the cancer heterogeneity and associates with specific features of tumour biology thus offering a novel targetable molecular signature in cancer

    Holistic Optimization of Bioinformatic Analysis Pipeline for Detection and Quantification of 2′-O-Methylations in RNA by RiboMethSeq

    No full text
    International audienceA major trend in the epitranscriptomics field over the last 5 years has been the high-throughput analysis of RNA modifications by a combination of specific chemical treatment(s), followed by library preparation and deep sequencing. Multiple protocols have been described for several important RNA modifications, such as 5-methylcytosine (m5C), pseudouridine (ψ), 1-methyladenosine (m1A), and 2'-O-methylation (Nm). One commonly used method is the alkaline cleavage-based RiboMethSeq protocol, where positions of reads' 5'-ends are used to distinguish nucleotides protected by ribose methylation. This method was successfully applied to detect and quantify Nm residues in various RNA species such as rRNA, tRNA, and snRNA. Such applications require adaptation of the initially published protocol(s), both at the wet bench and in the bioinformatics analysis. In this manuscript, we describe the optimization of RiboMethSeq bioinformatics at the level of initial read treatment, alignment to the reference sequence, counting the 5'- and 3'- ends, and calculation of the RiboMethSeq scores, allowing precise detection and quantification of the Nm-related signal. These improvements introduced in the original pipeline permit a more accurate detection of Nm candidates and a more precise quantification of Nm level variations. Applications of the improved RiboMethSeq treatment pipeline for different cellular RNA types are discussed

    Uranium-tolerant soil bacteria protect Arabidopsis thaliana seedling growth in a uranium pollution context

    No full text
    We investigated the impact of uranium (U) on Arabidopsis thaliana seed germination and on the early stages of seedling development. Using an in vitro device, we demonstrated that uranyl ion had a very low impact on Arabidopsis seed germination but had a drastic effect on the development of Arabidopsis seedlings. We showed that the two soil bacterial strains Microbacterium sp. ViU2A and Stenotrophomonas bentonitica BII-R7, which are able to tolerate high concentrations of U, strongly reduced the toxic effects of the metal on the seedling development. This protective effect is specific to these soil bacteria, as E. coli was not able to protect seedlings. The analysis of the distribution of U between Arabidopsis seedlings and soil bacteria showed that the protective effect of the bacteria was due to their ability to sequester U either by biosorption at the level of the cell surface and/or by intracellular or extracellular biomineralization.This study reveals that these bacteria are very good candidates for use in phytoremediation strategies in the case of phytostabilisation of U-polluted soils. They would be also useful to limit the contamination of the food chain by U because they would limit the entry of this toxic element in crop plants

    AlkAniline-Seq: Profiling of m7 G and m3 C RNA Modifications at Single Nucleotide Resolution.

    No full text
    RNA modifications play essential roles in gene expression regulation. Only seven out of >150 known RNA modifications are detectable transcriptome-wide by deep sequencing. Here we describe a new principle of RNAseq library preparation, which relies on a chemistry based positive enrichment of reads in the resulting libraries, and therefore leads to unprecedented signal-to-noise ratios. The proposed approach eschews conventional RNA sequencing chemistry and rather exploits the generation of abasic sites and subsequent aniline cleavage. The newly generated 5'-phosphates are used as unique entry for ligation of an adapter in library preparation. This positive selection, embodied in the AlkAniline-Seq, enables a deep sequencing-based technology for the simultaneous detection of 7-methylguanosine (m7 G) and 3-methylcytidine (m3 C) in RNA at single nucleotide resolution. As a proof-of-concept, we used AlkAniline-Seq to comprehensively validate known m7 G and m3 C sites in bacterial, yeast, and human cytoplasmic and mitochondrial tRNAs and rRNAs, as well as for identifying previously unmapped positions.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Abundance and size of hyaluronan in naked mole-rat tissues and plasma

    No full text
    Large amounts of ultra-high molecular weight hyaluronan (HA) have been described as the main cause of cancer resistance in naked mole-rats (Heterocephalus glaber, NMR). Our work examined HA metabolism in these rodents more closely. HA was localized and quantified using HA binding proteins. Its molecular weight was determined using size exclusion chromatography and gel electrophoresis, HA family gene expression using RNAseq analysis, and hyaluronidase activity using zymography. Guinea pigs (Cavia porcellus) and mice (Mus musculus) were used as controls for some experiments. We found that HA localization was similar in NMR, guinea pig, and mouse tissues but NMR had larger amounts and higher molecular weight (maximum, around 2.5 MDa) of HA in serum and almost all tissues tested. We could not find ultra-high molecular weight HA (≥ 4 MDa) in NMR samples, in contrast to previous descriptions. Hyaluronidase-1 had lower expression and activity in NMR than mouse lymph nodes. RNAseq results showed that, among HA family genes, Tnfaip6 and hyaluronidase-3 (Hyal3) were systematically overexpressed in NMR tissues. In conclusion, NMR samples, contrary to expectations, do not harbor ultra-high molecular weight HA, although its amount and average molecular weight are higher in NMR than in guinea pig tissues and serum. Although hyaluronidase expression and activity are lower in NMR than mouse lymph nodes, this not sufficient to explain the presence of high molecular weight HA. A different activity of the NMR HA synthases remains possible. These characteristics, together with extremely high Hyal3 and Tnfaip6 expression, may provide the NMR with a bespoke, and perhaps protective, HA metabolism

    Implication of repeat insertion domains in the trans -activity of the long non-coding RNA ANRIL

    No full text
    International audienceAbstract Long non-coding RNAs have emerged as critical regulators of cell homeostasis by modulating gene expression at chromatin level for instance. Here, we report that the lncRNA ANRIL, associated with several pathologies, binds to thousands of loci dispersed throughout the mammalian genome sharing a 21-bp motif enriched in G/A residues. By combining ANRIL genomic occupancy with transcriptomic analysis, we established a list of 65 and 123 genes potentially directly activated and silenced by ANRIL in trans, respectively. We also found that Exon8 of ANRIL, mainly made of transposable elements, contributes to ANRIL genomic association and consequently to its trans-activity. Furthermore, we showed that Exon8 favors ANRIL’s association with the FIRRE, TPD52L1 and IGFBP3 loci to modulate their expression through H3K27me3 deposition. We also investigated the mechanisms engaged by Exon8 to favor ANRIL’s association with the genome. Our data refine ANRIL’s trans-activity and highlight the functional importance of TEs on ANRIL’s activity
    corecore