1,992 research outputs found
A note on Reeb dynamics on the tight 3-sphere
We show that a nondegenerate tight contact form on the 3-sphere has exactly
two simple closed Reeb orbits if and only if the differential in linearized
contact homology vanishes. Moreover, in this case the Floquet multipliers and
Conley-Zehnder indices of the two Reeb orbits agree with those of a suitable
irrational ellipsoid in 4-space.Comment: 20 pages, no figure
The Minimal Length of a Lagrangian Cobordism between Legendrians
To investigate the rigidity and flexibility of Lagrangian cobordisms between
Legendrian submanifolds, we investigate the minimal length of such a cobordism,
which is a -dimensional measurement of the non-cylindrical portion of the
cobordism. Our primary tool is a set of real-valued capacities for a Legendrian
submanifold, which are derived from a filtered version of Legendrian Contact
Homology. Relationships between capacities of Legendrians at the ends of a
Lagrangian cobordism yield lower bounds on the length of the cobordism. We
apply the capacities to Lagrangian cobordisms realizing vertical dilations
(which may be arbitrarily short) and contractions (whose lengths are bounded
below). We also study the interaction between length and the linking of
multiple cobordisms as well as the lengths of cobordisms derived from
non-trivial loops of Legendrian isotopies.Comment: 33 pages, 9 figures. v2: Minor corrections in response to referee
comments. More general statement in Proposition 3.3 and some reorganization
at the end of Section
Measuring patient-perceived quality of care in US hospitals using Twitter
BACKGROUND: Patients routinely use Twitter to share feedback about their experience receiving healthcare. Identifying and analysing the content of posts sent to hospitals may provide a novel real-time measure of quality, supplementing traditional, survey-based approaches. OBJECTIVE: To assess the use of Twitter as a supplemental data stream for measuring patient-perceived quality of care in US hospitals and compare patient sentiments about hospitals with established quality measures. DESIGN: 404 065 tweets directed to 2349 US hospitals over a 1-year period were classified as having to do with patient experience using a machine learning approach. Sentiment was calculated for these tweets using natural language processing. 11 602 tweets were manually categorised into patient experience topics. Finally, hospitals with ≥50 patient experience tweets were surveyed to understand how they use Twitter to interact with patients. KEY RESULTS: Roughly half of the hospitals in the US have a presence on Twitter. Of the tweets directed toward these hospitals, 34 725 (9.4%) were related to patient experience and covered diverse topics. Analyses limited to hospitals with ≥50 patient experience tweets revealed that they were more active on Twitter, more likely to be below the national median of Medicare patients (p<0.001) and above the national median for nurse/patient ratio (p=0.006), and to be a non-profit hospital (p<0.001). After adjusting for hospital characteristics, we found that Twitter sentiment was not associated with Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings (but having a Twitter account was), although there was a weak association with 30-day hospital readmission rates (p=0.003). CONCLUSIONS: Tweets describing patient experiences in hospitals cover a wide range of patient care aspects and can be identified using automated approaches. These tweets represent a potentially untapped indicator of quality and may be valuable to patients, researchers, policy makers and hospital administrators
Localization Recall Precision (LRP): A New Performance Metric for Object Detection
Average precision (AP), the area under the recall-precision (RP) curve, is
the standard performance measure for object detection. Despite its wide
acceptance, it has a number of shortcomings, the most important of which are
(i) the inability to distinguish very different RP curves, and (ii) the lack of
directly measuring bounding box localization accuracy. In this paper, we
propose 'Localization Recall Precision (LRP) Error', a new metric which we
specifically designed for object detection. LRP Error is composed of three
components related to localization, false negative (FN) rate and false positive
(FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable
LRP error representing the best achievable configuration of the detector in
terms of recall-precision and the tightness of the boxes. In contrast to AP,
which considers precisions over the entire recall domain, Optimal LRP
determines the 'best' confidence score threshold for a class, which balances
the trade-off between localization and recall-precision. In our experiments, we
show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides
richer and more discriminative information than AP. We also demonstrate that
the best confidence score thresholds vary significantly among classes and
detectors. Moreover, we present LRP results of a simple online video object
detector which uses a SOTA still image object detector and show that the
class-specific optimized thresholds increase the accuracy against the common
approach of using a general threshold for all classes. At
https://github.com/cancam/LRP we provide the source code that can compute LRP
for the PASCAL VOC and MSCOCO datasets. Our source code can easily be adapted
to other datasets as well.Comment: to appear in ECCV 201
ArDM: first results from underground commissioning
The Argon Dark Matter experiment is a ton-scale double phase argon Time
Projection Chamber designed for direct Dark Matter searches. It combines the
detection of scintillation light together with the ionisation charge in order
to discriminate the background (electron recoils) from the WIMP signals
(nuclear recoils). After a successful operation on surface at CERN, the
detector was recently installed in the underground Laboratorio Subterr\'aneo de
Canfranc, and the commissioning phase is ongoing. We describe the status of the
installation and present first results from data collected underground with the
detector filled with gas argon at room temperature.Comment: 6 pages, 3 figures, Light Detection In Noble Elements (LIDINE 2013
Status of the ArDM Experiment: First results from gaseous argon operation in deep underground environment
The Argon Dark Matter (ArDM-1t) experiment is a ton-scale liquid argon (LAr)
double-phase time projection chamber designed for direct Dark Matter searches.
Such a device allows to explore the low energy frontier in LAr. After
successful operation on surface at CERN, the detector has been deployed
underground and is presently commissioned at the Canfranc Underground
Laboratory (LSC). In this paper, we describe the status of the installation and
present first results on data collected in gas phase.Comment: 21 pages, 20 figure
Twisted supersymmetric 5D Yang-Mills theory and contact geometry
We extend the localization calculation of the 3D Chern-Simons partition
function over Seifert manifolds to an analogous calculation in five dimensions.
We construct a twisted version of N=1 supersymmetric Yang-Mills theory defined
on a circle bundle over a four dimensional symplectic manifold. The notion of
contact geometry plays a crucial role in the construction and we suggest a
generalization of the instanton equations to five dimensional contact
manifolds. Our main result is a calculation of the full perturbative partition
function on a five sphere for the twisted supersymmetric Yang-Mills theory with
different Chern-Simons couplings. The final answer is given in terms of a
matrix model. Our construction admits generalizations to higher dimensional
contact manifolds. This work is inspired by the work of Baulieu-Losev-Nekrasov
from the mid 90's, and in a way it is covariantization of their ideas for a
contact manifold.Comment: 28 pages; v2: minor mistake corrected; v3: matches published versio
On-chip thermometry for microwave optomechanics implemented in a demagnetization cryostat
We report on microwave optomechanics measurements performed on a nuclear
adiabatic demagnetization cryostat, whose temperature is determined by accurate
thermometry from below 500K to about 1Kelvin. We describe a method for
accessing the on-chip temperature, building on the blue-detuned parametric
instability and a standard microwave setup. The capabilities and sensitivity of
both the experimental arrangement and the developed technique are demonstrated
with a very weakly coupled silicon-nitride doubly-clamped beam mode of about
4MHz and a niobium on-chip cavity resonating around 6GHz. We report on an
unstable intrinsic driving force in the coupled microwave-mechanical system
acting on the mechanics that appears below typically 100mK. The origin of
this phenomenon remains unknown, and deserves theoretical input. It prevents us
from performing reliable experiments below typically 10-30mK; however no
evidence of thermal decoupling is observed, and we propose that the same
features should be present in all devices sharing the microwave technology, at
different levels of strengths. We further demonstrate empirically how most of
the unstable feature can be annihilated, and speculate how the mechanism could
be linked to atomic-scale two level systems. The described
microwave/microkelvin facility is part of the EMP platform, and shall be used
for further experiments within and below the millikelvin range.Comment: 14 pages with appendi
Measurements of the Generalized Electric and Magnetic Polarizabilities of the Proton at Low Q2 Using the VCS Reaction
The mean square polarizability radii of the proton have been measured for the
first time in a virtual Compton scattering experiment performed at the
MIT-Bates out-of-plane scattering facility. Response functions and
polarizabilities obtained from a dispersion analysis of the data at Q2=0.06
GeV2/c2 are in agreement with O(p3) heavy baryon chiral perturbation theory.
The data support the dominance of mesonic effects in the polarizabilities, and
the increase of beta with increasing Q2 is evidence for the cancellation of
long-range diamagnetism by short-range paramagnetism from the pion cloud
Symplectic cohomology and q-intersection numbers
Given a symplectic cohomology class of degree 1, we define the notion of an
equivariant Lagrangian submanifold. The Floer cohomology of equivariant
Lagrangian submanifolds has a natural endomorphism, which induces a grading by
generalized eigenspaces. Taking Euler characteristics with respect to the
induced grading yields a deformation of the intersection number. Dehn twists
act naturally on equivariant Lagrangians. Cotangent bundles and Lefschetz
fibrations give fully computable examples. A key step in computations is to
impose the "dilation" condition stipulating that the BV operator applied to the
symplectic cohomology class gives the identity. Equivariant Lagrangians mirror
equivariant objects of the derived category of coherent sheaves.Comment: 32 pages, 9 figures, expanded introduction, added details of example
7.5, added discussion of sign
- …