1,123 research outputs found

    Calcium isotope fractionation in alpine plants

    Get PDF
    In order to develop Ca isotopes as a tracer for biogeochemical Ca cycling in terrestrial environments and for Ca utilisation in plants, stable calcium isotope ratios were measured in various species of alpine plants, including woody species, grasses and herbs. Analysis of plant parts (root, stem, leaf and flower samples) provided information on Ca isotope fractionation within plants and seasonal sampling of leaves revealed temporal variation in leaf Ca isotopic composition. There was significant Ca isotope fractionation between soil and root tissue \Updelta^{44/42}\hbox{Ca}_{\rm root-soil} \approx -0.40\,\permille in all investigated species, whereas Ca isotope fractionation between roots and leaves was species dependent. Samples of leaf tissue collected throughout the growing season also highlighted species differences: Ca isotope ratios increased with leaf age in woody species but remained constant in herbs and grasses. The Ca isotope fractionation between roots and soils can be explained by a preferential binding of light Ca isotopes to root adsorption sites. The observed differences in whole plant Ca isotopic compositions both within and between species may be attributed to several potential factors including root cation exchange capacity, the presence of a woody stem, the presence of Ca oxalate, and the levels of mycorrhizal infection. Thus, the impact of plants on the Ca biogeochemical cycle in soils, and ultimately the Ca isotope signature of the weathering flux from terrestrial environments, will depend on the species present and the stage of vegetation successio

    τρππν\tau\to\rho\pi\pi\nu decays

    Full text link
    Effective chiral theory of mesons is applied to study the four decay modes of τρππν\tau\to\rho\pi\pi\nu. Theoretical values of the branching ratios are in agreement with the data. The theory predicts that the a1a_{1} resonance plays a dominant role in these decays. There is no new parameter in this study.Comment: 12 pages and one figur

    New Nd-142 Evidence for a Non-Chondritic Composition of the Moon

    Get PDF
    The coupled Sm-147,146-Nd-143,142 systematics of lunar samples has been extensively studied for estimating the timescale of lunar differentiation. The published datasets yield consistent ages for Nd isotopic closure within the lunar mantle of approx.200 Myr after CAI formation. Although this time constraint is consistent with estimates derived from Hf-W chronometry of the Moon (>60 Myr after CAI formation), there is debate as to whether this age has chronological significance. Furthermore, there are discrepancies regarding the Nd isotope composition of the bulk Moon. Rankenburg et al. obtained a epsilon Nd-142 vs. Sm-147/Nd-144 correlation for lunar samples passing though the chondritic reference value (Sm-147/Nd-144 = 0.1967, epsilon Nd-142 = -0.21), suggesting that the Moon has a chondritic bulk composition. In contrast, the other datasets define a correlation line that passes approx.10-20 ppm above, suggesting that the Moon has a superchondritic Sm-147/Nd-144 (approx.0.206), close to that of the early depleted Earth (EDM). We present new Sm-Nd data for a high-Ti mare basalt (70135), two low-Ti mare basalt (LAP 02205 and MIL 05035) and a KREEPy low-Ti mare basalt (NWA 2977). These data are used to evaluate the significance of the Sm-Nd systematics for constraining the timescale of lunar differentiation and the bulk Nd isotope composition of the Moon

    MEASURING SQUASH HITTING ACCURACY USING THE ‘HUNT SQUASH ACCURACY TEST’

    Get PDF
    The purpose of this study was to determine the reliability and validity of the Hunt Squash Accuracy Test (HSAT). Reliability: ten male squash players performed the HSAT twice within seven days. Each test consisted of 375 shots across 13 different types of squash strokes on both the forehand and backhand side. Reliability was measured using a typical error (TE) score from consecutive pairs of trials. The overall TE score for the test was 1.82%, demonstrating that the HSAT is very reliable at the 90% confidence limit. Validity: measured using a correlation analysis comparing the results of 8 individual’s HSAT scores against a round-robin tournament ranking where all 8 players played against each other, as well as coach rankings of player ability. Validity was considered high with correlation coefficients of 0.93 for both the round-robin and coach ranking

    Melting of a Two-component Source beneath Iceland

    Get PDF
    New trace element and Hf-Nd isotope data on post-glacial basalts from Iceland's main rift zones are used in conjunction with literature data to evaluate the relative importance of source heterogeneity and the melting process for the final melt composition. Correlations between Hf and Nd isotope compositions and trace element ratios indicate that at least two source components are sampled systematically as a function of the degree and pressure of melting beneath Iceland. Strong depletion in Rb, Ba, U and Th and enrichment in Nb and Ta compared with La in the most enriched samples from the Reykjanes Peninsula and Western Rift Zone suggests that the enriched source component is similar to ancient recycled enriched mid-ocean ridge basalt (E-MORB) crust. Highly incompatible trace element ratios such as Nb/La and Nb/U and Pb isotope ratios are variable across Iceland. This observation suggests that either the enriched component is intrinsically heterogeneous, or that there is a larger proportion of the enriched source component beneath the Southwestern Rift Zone compared with the Northern Rift Zone. The relative effect of source heterogeneity and melting on the final melt composition was evaluated with a one-dimensional polybaric melt mixing model in which accumulated melts from a depleted MORB mantle and a recycled E-MORB crust are mixed in different ways. Two styles of melt mixing were simulated: (1) complete mixing of melts with variable proportions of the depleted mantle and recycled E-MORB components; (2) incomplete mixing with a fixed initial proportion of the two source components. Calculated pressure-dependent compositional changes using these simple two-component melting models can explain the observed trends in trace element ratio and isotope ratio diagrams for Icelandic basalts, even in cases where conventional binary mixing models would require more than two source components. The example of Iceland demonstrates that melt mixing during extraction from the mantle is a key process for controlling the trace element and isotope variability observed in basaltic lavas and must be evaluated before inferring the presence of multiple source component

    Propylthiocyclopentadiene: A new synthetic route to complexes of iron and group 4 transition metals. Molecular structure of (C5H4SCH2CH2CH3)(2)ZrCl2

    Full text link
    The use of the propylthio-substituted cyclopentadienylsodium salt leads to 1,1'-bis(propylthio) ferrocene and dichlorobis(propylthiocyclopentadienyl)zirconium, titanium or hafnium(IV). The structure of (C5H4SCH2CH2CH3)(2)ZrCl2 has been established by X-ray analysis (orthorhombic, Pbcn, a = 11.943(1) Angstrom, b = 6.883(2) Angstrom, c = 22.412(2) Angstrom, V = 1842.4(2) Angstrom(3), Z = 4, R(F) = 0.027). The complexes have been characterized by H-1 and C-13 NMR and electrochemical studies. The physico chemical properties of 1,1'-bis(propylthio) ferrocene are discussed by a molecular approach at the extended Huckel level

    Application of precise 142Nd/144Nd analysis of small samples to inclusions in diamonds (Finsch, South Africa) and Hadean Zircons (Jack Hills, Western Australia)

    Get PDF
    146Sm-142Nd and 147Sm-143Nd systematics were investigated in garnet inclusions in diamonds from Finsch (S. Africa) and Hadean zircons from Jack Hills (W. Australia) to assess the potential of these systems as recorders of early Earth evolution. The stud

    Structural differences of cell walls in earlywood and latewood of Pinus sylvestris and their contribution to biomass recalcitrance

    Get PDF
    Scots pine (Pinus sylvestris L.) is an evergreen coniferous tree with wide distribution and good growth performance in a range of habitats. Therefore, wood from P. sylvestris is produced in many managed forests and is frequently used in industry. Despite the importance of pine wood, we still do not fully understand its molecular structure what limits improvements in its processing. One of the basic features leading to variation in wood properties is the presence of earlywood and latewood which form annual growth rings. Here, we characterise biochemical traits that differentiate cell walls of earlywood and latewood in Scots pine. We discover that latewood is less recalcitrant to enzymatic digestion, with galactoglucomannan showing particularly pronounced difference in accessibility. Interestingly, characterisation of lignin reveals a higher proportion of coniferaldehydes in pine latewood and suggests the presence of a different linkage landscape in this wood type. With complementary analysis of wood polysaccharides this enabled us to propose the first detailed molecular model of earlywood and latewood and to conclude that the variation in lignin structure is likely the main determinant of differences in recalcitrance observed between the two wood types in pine. Our discoveries lay the foundation for improvements in industrial processes that use pine wood since we show clear pathways for increasing the efficiency of enzymatic processing of this renewable material. Our work will help guide future breeding of pine trees with desired timber properties and can help link molecular structure of softwood cell walls to function of the different types of xylem in conifers
    corecore