24 research outputs found

    Neutron scattering studies on URu2Si2

    Full text link
    This paper is aiming to review some of the neutron scattering studies performed on URu2Si2 in Grenoble. This compound has been studied for a quarter of century because of a so-called hidden order ground state visible by most of the bulk experiments but almost invisible by microscopic probes like neutrons, muons NMR or x-ray. We stress on some aspects that were not addressed previously. Firstly, the comparison of the cell parameters in the 1-2-2 systems seems to point that the magnetic properties of URu2Si2 are leading by an U4+ electronic state. Secondly, a compilation of the different studies of the tiny antiferromagnetic moment indicates that the tiny antiferromagnetic moment has a constant value which may indicate that it is not necessary extrinsic. We also present the last development on the magnetic form factor measurement in which the magnetic density rotates when entering in the hidden order state. To end, the thermal dependence of the two most intense magnetic excitation at Q0=(1,0,0) and Q1=(0.6,0,0) seems to indicate two different origins or processes for these excitations.Comment: 18 pages, 18 figures, published in Philosophical Magazine, 201

    Spin-Excitations Anisotropy in the Bilayer Iron-Based Superconductor CaKFe4_4As4_4

    Full text link
    We use polarized inelastic neutron scattering to study the spin-excitations anisotropy in the bilayer iron-based superconductor CaKFe4_4As4_4 (TcT_c = 35 K). In the superconducting state, both odd and even LL-modulations of spin resonance have been observed in our previous unpolarized neutron scattering experiments (T. Xie {\it et al.} Phys. Rev. Lett. {\bf 120}, 267003 (2018)). Here we find that the high-energy even mode (18\sim 18 meV) is isotropic in spin space, but the low-energy odd modes consist of a cc-axis polarized mode around 9 meV along with another partially overlapped in-plane mode around 12 meV. We argue that such spin anisotropy is induced by the spin-orbit coupling in the spin-vortex-type fluctuations of this unique compound. The spin anisotropy is strongly affected by the superconductivity, where it is weak below 6 meV in the normal state and then transferred to higher energy and further enhanced in the odd mode of spin resonance below TcT_c.Comment: 6 pages, 4 figures. Accepted by Physical Review Researc

    In-plane uniaxial pressure-induced out-of-plane antiferromagnetic moment and critical fluctuations in BaFe2_2As2_2

    Full text link
    A small in-plane external uniaxial pressure has been widely used as an effective method to acquire single domain iron pnictide BaFe2_2As2_2, which exhibits twin-domains without uniaxial strain below the tetragonal-to-orthorhombic structural (nematic) transition temperature TsT_s. Although it is generally assumed that such a pressure will not affect the intrinsic electronic/magnetic properties of the system, it is known to enhance the antiferromagnetic (AF) ordering temperature TNT_N (<Ts<T_s) and create in-plane resistivity anisotropy above TsT_s. Here we use neutron polarization analysis to show that such a strain on BaFe2_2As2_2 also induces a static or quasi-static out-of-plane (cc-axis) AF order and its associated critical spin fluctuations near TN/TsT_N/T_s. Therefore, uniaxial pressure necessary to detwin single crystals of BaFe2_2As2_2 actually rotates the easy axis of the collinear AF order near TN/TsT_N/T_s, and such effect due to spin-orbit coupling must be taken into account to unveil the intrinsic electronic/magnetic properties of the system.Comment: 11 pages, 4 figures, Supplementary information is available upon reques

    Spiral spin-liquid and the emergence of a vortex-like state in MnSc2_2S4_4

    Full text link
    Spirals and helices are common motifs of long-range order in magnetic solids, and they may also be organized into more complex emergent structures such as magnetic skyrmions and vortices. A new type of spiral state, the spiral spin-liquid, in which spins fluctuate collectively as spirals, has recently been predicted to exist. Here, using neutron scattering techniques, we experimentally prove the existence of a spiral spin-liquid in MnSc2_2S4_4 by directly observing the 'spiral surface' - a continuous surface of spiral propagation vectors in reciprocal space. We elucidate the multi-step ordering behavior of the spiral spin-liquid, and discover a vortex-like triple-q phase on application of a magnetic field. Our results prove the effectiveness of the J1J_1-J2J_2 Hamiltonian on the diamond lattice as a model for the spiral spin-liquid state in MnSc2_2S4_4, and also demonstrate a new way to realize a magnetic vortex lattice.Comment: 10 pages, 11 figure

    Magnetic phase diagram of U(Ru_0.98Rh_0.02)₂Si₂

    No full text
    Proceedings of the International Conference on Strongly Correlated Electron System

    Finite size effect on the magnetic excitations spectra, phonons and heat conduction of the quasi- one-dimensional spin chains system SrCuO 2

    No full text
    International audienceWe report inelastic neutron scattering measurements of the phonons modes, in the one-dimensional half integer spin chains cuprate SrCuO2. We study the longitudinal and the transverse modes propagating in the direction of the chains, along Q (0 0 L) and Q (2 0 L), respectively. On the other hand, we investigate the effect of substitution by impurities in the corresponding doped compounds, namely, SrCu0.99M0.01O2 with M=Mg or Zn, and La0.01Sr0.99CuO2. Our results evidence a systematic strong spinon-phonon interaction leading to an important decrease of the phonon scattered intensity as well as a decrease of the group velocity of the transverse acoustic modes upon substitution, and a shift of the transverse optical B3 u mode in the La-doped SrCuO2, in terms of energy

    Interplay between different states in heavy-fermion physics

    No full text
    Proceedings of the 17th International Conference on MagnetismCalorimetry experiments under high pressure were used to clarify the interplay between different states such as superconductivity (SC) and antiferromagnetism (AF) in CeRhIn5, spin density wave (SDW) and large moment antiferromagnetism (LMAF) in URu2Si2. Evidences are given on the reentrance of AF under magnetic field in the SC phase of CeRhIn5 up to pc=2.5GPa where the Néel temperature will collapse in the absence of SC. For URu2Si2 measurements up to 10GPa support strongly the coexistence of SDW and LMAF at high pressures
    corecore