157 research outputs found

    Aqueous alteration on the parent bodies of carbonaceous chondrites: Computer simulations of late-stage oxidation

    Get PDF
    CI carbonaceous chondrites may be products of hydrous alteration of CV- or anhydrous CM-type materials. The CIs typically contain veins filled with carbonates and sulfates, probably indicating a period of late stage aqueous alteration under oxidizing conditions. To test this idea, computer simulations of aqueous alteration of CV- and CM-type carbonaceous were performed. Simulations were restricted to the oxidation of hydrous mineral assemblages produced in previous simulations in order to determine whether further reaction and oxidation results in the phyllosilicate, carbonate, sulfate and oxide vein assemblages typical of CI carbonaceous chondrites. Our simulations were performed at 1, 25, 100, and 150 C (the appropriate temperature range) for the CV and CM mineral assemblages and using the computer code EQ3/6

    Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration

    Get PDF
    Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed
    corecore