3 research outputs found

    Optimization of biologics to reduce treatment failure in inflammatory bowel diseases

    No full text
    International audienceModerate to severe inflammatory bowel disease patients can fail to respond to conventional therapy and/or to biologic treatment. In the era of TNFα antagonists and other non-anti-TNF biologic drugs, it is important to review the literature on biologic treatment failure, which could be defined as primary non-response, secondary loss of response and intolerance. Therapeutic drug monitoring (TDM), that is, drug trough level and antidrug antibodies, should enable to determine the mechanisms of treatment failure and to optimize drug efficacy. There is a consensus on reactive TDM at the time of loss of response. Proactive TDM could be of interest during induction and/or maintenance, but randomized controlled trials are required

    Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses

    No full text
    IF 2.137International audienceBACKGROUND AND OBJECTIVE:Whole-exome sequencing (WES) has now entered medical practice with powerful applications in the diagnosis of rare Mendelian disorders. Although the usefulness and cost-effectiveness of WES have been widely demonstrated, it is essential to reduce the diagnostic turnaround time to make WES a first-line procedure. Since 2011, the automation of laboratory procedures and advances in sequencing chemistry have made it possible to carry out diagnostic whole genome sequencing from the blood sample to molecular diagnosis of suspected genetic disorders within 50 h. Taking advantage of these advances, the main objective of the study was to improve turnaround times for sequencing results.METHODS:WES was proposed to 29 patients with severe undiagnosed disorders with developmental abnormalities and faced with medical situations requiring rapid diagnosis. Each family gave consent. The extracted DNA was sequenced on a NextSeq500 (Illumina) instrument. Data were analyzed following standard procedures. Variants were interpreted using in-house software. Each rare variant affecting protein sequences with clinical relevance was tested for familial segregation.RESULTS:The diagnostic rate was 45% (13/29), with a mean turnaround time of 40 days from reception of the specimen to delivery of results to the referring physician. Besides permitting genetic counseling, the rapid diagnosis for positive families led to two pre-natal diagnoses and two inclusions in clinical trials.CONCLUSIONS:This pilot study demonstrated the feasibility of rapid diagnostic WES in our primary genetics center. It reduced the diagnostic odyssey and helped provide support to families.Copyright © 2017 Elsevier Masson SAS. All rights reserved

    Loss-of-Function Mutations inUNC45ACause a Syndrome Associating Cholestasis, Diarrhea, Impaired Hearing, and Bone Fragility

    No full text
    Despite the rapid discovery of genes for rare genetic disorders, we continue to encounter individuals presenting with syndromic manifestations. Here, we have studied four affected people in three families presenting with cholestasis, congenital diarrhea, impaired hearing, and bone fragility. Whole-exome sequencing of all affected individuals and their parents identified biallelic mutations in Unc-45 Myosin Chaperone A (UNC45A) as a likely driver for this disorder. Subsequent in vitro and in vivo functional studies of the candidate gene indicated a loss-of-function paradigm, wherein mutations attenuated or abolished protein activity with concomitant defects in gut development and function
    corecore