6 research outputs found

    Functional Characterization of the Incomplete Phosphotransferase System (PTS) of the Intracellular Pathogen Brucella melitensis

    Get PDF
    Background: In many bacteria, the phosphotransferase system (PTS) is a key player in the regulation of the assimilation of alternative carbon sources notably through catabolic repression. The intracellular pathogens Brucella spp. possess four PTS proteins (EI Ntr, NPr, EIIA Ntr and an EIIA of the mannose family) but no PTS permease suggesting that this PTS might serve only regulatory functions

    PTS-mediated regulation of the transcription activator MtlR from different species: Surprising differences despite strong sequence conservation

    No full text
    The hexitol D-mannitol is transported by many bacteria via a phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS). In most Firmicutes, the transcription activator MtlR controls the expression of the genes encoding the D-mannitol-specific PTS components and D-mannitol-P dehydrogenase. MtlR contains an N-terminal helix-turn-helix motif followed by an Mga-like domain, two PTS regulation domains (PRDs), an EIIBGat- and an EIIA(Mtl)-like domain. The four regulatory domains are the target of phosphorylation by PTS components. Despite strong sequence conservation, the mechanisms controlling the activity of MtlR from Lactobacillus casei, Bacillus subtilis and Geobacillus stearothermophilus are quite different. Owing to the presence of a tyrosine in place of the second conserved histidine (His) in PRD2, L. casei MtlR is not phosphorylated by Enzyme I (EI) and HPr. When the corresponding His in PRD2 of MtlR from B. subtilis and G. stearothermophilus was replaced with alanine, the transcription regulator was no longer phosphorylated and remained inactive. Surprisingly, L. casei MtlR functions without phosphorylation in PRD2 because in a ptsI (EI) mutant MtlR is constitutively active. EI inactivation prevents not only phosphorylation of HPr, but also of the PTSMtl components, which inactivate MtlR by phosphorylating its EIIBGat- or EIIA(Mtl)-like domain. This explains the constitutive phenotype of the ptsI mutant. The absence of EIIBMtl-mediated phosphorylation leads to induction of the L. casei mtl operon. This mechanism resembles mtlARFD induction in G. stearothermophilus, but differs from EIIA(Mtl)-mediated induction in B. subtilis. In contrast to B. subtilis MtlR, L. casei MtlR activation does not require sequestration to the membrane via the unphosphorylated EIIBMtl domain

    The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions

    No full text
    The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components

    Transcription regulators controlled by interaction with enzyme IIB components of the phosphoenolpyruvate:sugar phosphotransferase system

    No full text
    Numerous bacteria possess transcription activators and antiterminators composed of regulatory domains phosphorylated by components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). These domains, called PTS regulation domains (PRDs), usually contain two conserved histidines as potential phosphorylation sites. While antiterminators possess two PRDs with four phosphorylation sites, transcription activators contain two PRDs plus two regulatory domains resembling PTS components (EIIA and EIIB). The activity of these transcription regulators is controlled by up to five phosphorylations catalyzed by PTS proteins. Phosphorylation by the general PTS components El and HPr is usually essential for the activity of PRD-containing transcription regulators, whereas phosphorylation by the sugar-specific components ERA or EIIB lowers their activity. For a specific regulator, for example the Bacillus subtilis mtl operon activator MtIR, the functional phosphorylation sites can be different in other bacteria and consequently the detailed mode of regulation varies. Some of these transcription regulators are also controlled by an interaction with a sugar-specific EIIB PTS component. The EIIBs are frequently fused to the membrane-spanning EIIC and EIIB-mediated membrane sequestration is sometimes crucial for the control of a transcription regulator. This is also true for the Escherichia coli repressor Mlc, which does not contain a PRD but nevertheless interacts with the EIIB domain of the glucose-specific PTS. In addition, some PRD-containing transcription activators interact with a distinct EIIB protein located in the cytoplasm. The phosphorylation state of the EIIB components, which changes in response to the presence or absence of the corresponding carbon source, affects their interaction with transcription regulators. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012). (C) 2013 Elsevier B.V. All rights reserved

    Abstracts of 1st International Conference on Computational & Applied Physics

    No full text
    This book contains the abstracts of the papers presented at the International Conference on Computational & Applied Physics (ICCAP’2021) Organized by the Surfaces, Interfaces and Thin Films Laboratory (LASICOM), Department of Physics, Faculty of Science, University Saad Dahleb Blida 1, Algeria, held on 26–28 September 2021. The Conference had a variety of Plenary Lectures, Oral sessions, and E-Poster Presentations. Conference Title: 1st International Conference on Computational & Applied PhysicsConference Acronym: ICCAP’2021Conference Date: 26–28 September 2021Conference Location: Online (Virtual Conference)Conference Organizer: Surfaces, Interfaces, and Thin Films Laboratory (LASICOM), Department of Physics, Faculty of Science, University Saad Dahleb Blida 1, Algeria
    corecore